editor's blog
Subscribe Now

An Accelerometer GUI

Including an accelerometer in your system is easy these days, right? Heck, they can trigger interrupts in your processor, so just toss it in, wait for the fateful interrupt, and let your handler do the rest. Right?

Actually… no. There are numerous controls that you have – and will likely want to take advantage of – to optimize how your accelerometer works. Those settings have a significant impact on noise and power. Sampling rate is a good example: the faster you sample, the more accurate your reading will be (i.e., lower noise). But that also increases power consumption. There are a whole slew of registers in the accelerometer that contain all of the settings, and the datasheets tell you how to get to each one.

Problem is, you mostly need to do that through code, typically. That can mean iterating through your start-up code, for example, to load different values and see what happens. And that last bit is important: you might actually have to exercise the thing to figure out where the best balance is. Lots of back-and-forth changing settings, measuring, rinsing, and repeating.

The other alternative has been to use an accelerometer that has been simplified, with a few crude settings that may or may not represent the best mix for your system.

Kionix recently announced a tool to provide easier access to the fine-grained detail in their accelerometers. The idea behind this FlexSet Performance Optimizer is to make detailed adjustments almost as easy as the crude ones on simplified accelerometers.

At the first level, this is a GUI into the register set. So at the very least, it’s easy to see and change register values. At the next level, the tool will provide information on the power and noise implications of your settings – meaning you don’t need to exercise the thing to figure out the impact of your selected settings. And at yet a higher level, you can do side-by-side comparisons of different cases.

The hooks for this are built into their latest accelerometers and will support new ones going forward. The GUI itself can be downloaded or run on the internet. (Presumably the one on the internet won’t actually set the settings in your accelerometer, just figure out what those settings should be. Unless, I suppose, you’ve connected your accelerometer to the internet…)

You can find more in their release.

Leave a Reply

featured blogs
Dec 19, 2024
Explore Concurrent Multiprotocol and examine the distinctions between CMP single channel, CMP with concurrent listening, and CMP with BLE Dynamic Multiprotocol....
Dec 24, 2024
Going to the supermarket? If so, you need to watch this video on 'Why the Other Line is Likely to Move Faster' (a.k.a. 'Queuing Theory for the Holiday Season')....

Libby's Lab

Libby's Lab - Scopes Out Littelfuse's SRP1 Solid State Relays

Sponsored by Mouser Electronics and Littelfuse

In this episode of Libby's Lab, Libby and Demo investigate quiet, reliable SRP1 solid state relays from Littelfuse availavble on Mouser.com. These multi-purpose relays give engineers a reliable, high-endurance alternative to mechanical relays that provide silent operation and superior uptime.

Click here for more information about Littelfuse SRP1 High-Endurance Solid-State Relays

featured chalk talk

Shift Left Block/Chip Design with Calibre
In this episode of Chalk Talk, Amelia Dalton and David Abercrombie from Siemens EDA explore the multitude of benefits that shifting left with Calibre can bring to chip and block design. They investigate how Calibre can impact DRC verification, early design error debug, and optimize the configuration and management of multiple jobs for run time improvement.
Jun 18, 2024
46,571 views