editor's blog
Subscribe Now

SPICE-ing It Up

SPICE is pretty fundamental to circuit design. That’s obvious for cell and custom designers; for you digital folks, you get exempted only because a cell designer already did the work for you. And, as with everything EDA, things are getting harder to compute with each process node.

Part of it is incremental. New nodes come with increasingly important parasitic modeling. That’s always been the case from generation to generation, not because of new parasitics, but because of old ones that used to be ignored that now mattered. But with FinFETs, you have those plus complex new parasitic relationships that have never been there before.

Cadence says that, despite the fact that the “H” in HSIM* stands for “hierarchical,” this hierarchy gets screwed up by the Rs and Cs. Lose the hierarchy and you lose the performance advantage it provides.

There’s another change that’s made life tougher for SPICE. In earlier days, performance could be increased by partitioning the job into channels, with PMOS transistors connected to VDD and NMOS to ground. But power gating has screwed that all up: those connections aren’t direct anymore because of the gates in the way. The power network had to be solved separately from the design, with the result munged back together at the end.

And so performance has suffered. Cadence’s latest SPICE XPS (eXtensive Partitioning Simulator) algorithms are said to use new partitioning algorithms that scale more linearly than their earlier exponential versions. Performance with power gating has returned to what it was in the old days before power gating. They’re touting a 10X improvement in speed, along with fewer required computing resources.

And how, you might ask, are they doing the partitioning now? I did ask. And they’re not saying.

Their current release is optimized for memory. Mixed signal designs will run, but not quite as fast; they’re anticipating that being optimized in the first half of 2014.

You can read more in their announcement.

 

*Edited to fix the error noted below…

Leave a Reply

featured blogs
Dec 19, 2024
Explore Concurrent Multiprotocol and examine the distinctions between CMP single channel, CMP with concurrent listening, and CMP with BLE Dynamic Multiprotocol....
Dec 24, 2024
Going to the supermarket? If so, you need to watch this video on 'Why the Other Line is Likely to Move Faster' (a.k.a. 'Queuing Theory for the Holiday Season')....

Libby's Lab

Libby's Lab - Scopes Out Littelfuse's SRP1 Solid State Relays

Sponsored by Mouser Electronics and Littelfuse

In this episode of Libby's Lab, Libby and Demo investigate quiet, reliable SRP1 solid state relays from Littelfuse availavble on Mouser.com. These multi-purpose relays give engineers a reliable, high-endurance alternative to mechanical relays that provide silent operation and superior uptime.

Click here for more information about Littelfuse SRP1 High-Endurance Solid-State Relays

featured chalk talk

High Voltage Intelligent Battery Shunt
Sponsored by Mouser Electronics and Vishay
In this episode of Chalk Talk, Scott Blackburn from Vishay and Amelia Dalton explore the what, where, and how of intelligent battery shunts. They also examine the key functions of battery management systems, the electrical characteristics of high voltage intelligent battery shunts and how you can get started using a high voltage intelligent battery shunt for your next design.
Dec 4, 2024
15,586 views