editor's blog
Subscribe Now

Getting Beyond “It Depends” for Certification

More and more electronics are going into places where they could cause real damage if they don’t work right. Things like airplanes and weapons and, in particular, the systems that control them. That goes for hardware and software.

So there are elaborate standards controlling how things have to be done in order to pass muster for such systems. DO-178, DO-278, and DO-254 are only the most visible of these. The problem is that the standards don’t actually tell you what has to be done. They outline a broad process for certification, but exactly what is supposed to happen relies on a key individual: the “designated engineering representative,” or DER.

If you ask, in general, how you get a system certified, the answer is, “It depends.” And one of the things it depends on is the DER. You work with the DER to decide what you need to do for your system to be certified. And just because you did a particular set of things with one DER for one system doesn’t mean you can simply replicate that process with a different DER on another system. If the other DER has different ideas about how things should be done, then you have to go in that direction for the new project.

I (thankfully) don’t live in that particular world, but that’s got to be completely frustrating.

LDRA has offered up a Compliance Management System to help with this. It’s a certification process based on a particular individual, Todd White’s, 30 years of experience as a DER. It incorporates a system of checklists, matrices, and document templates intended to speed the certification process.

It works hand in hand with their certification consulting services, which are probably helpful to ensuring that this works most seamlessly. Using a different DER would, presumably, run the risk of that DER wanting something different. You would think, if these are truly proven elements for certification, that any reasonable DER would be happy to include them into a certification plan – unless they have their own system and insist on doing it their way.

So there’s still the possibility of some “it depends” in the mix, but the goal appears to be to remove some of it.

You can find out more in their recent release.

Leave a Reply

featured blogs
Nov 15, 2024
Explore the benefits of Delta DFU (device firmware update), its impact on firmware update efficiency, and results from real ota updates in IoT devices....
Nov 13, 2024
Implementing the classic 'hand coming out of bowl' when you can see there's no one under the table is very tempting'¦...

featured video

Introducing FPGAi – Innovations Unlocked by AI-enabled FPGAs

Sponsored by Intel

Altera Innovators Day presentation by Ilya Ganusov showing the advantages of FPGAs for implementing AI-based Systems. See additional videos on AI and other Altera Innovators Day in Altera’s YouTube channel playlists.

Learn more about FPGAs for Artificial Intelligence here

featured paper

Quantized Neural Networks for FPGA Inference

Sponsored by Intel

Implementing a low precision network in FPGA hardware for efficient inferencing provides numerous advantages when it comes to meeting demanding specifications. The increased flexibility allows optimization of throughput, overall power consumption, resource usage, device size, TOPs/watt, and deterministic latency. These are important benefits where scaling and efficiency are inherent requirements of the application.

Click to read more

featured chalk talk

Reliability: Basics & Grades
Reliability is cornerstone to all electronic designs today, but how reliability is implemented and determined can vary widely by different market segments. In this episode of Chalk Talk, Amelia Dalton and Sam Accardo from the YAGEO Group explore the definition of reliability for electronic components, investigate the different grades of reliability offered by the YAGEO Group and the various steps that the YAGEO Group is taking to ensure the greatest reliability of their components.
Aug 15, 2024
53,467 views