editor's blog
Subscribe Now

Room-Temp Covalent Wafer Bonding

MEMS elements are delicate. They sit there in their little cavities, expecting to operate in some sort of controlled environment – perhaps a particular gas or pressure (or lack of it). And if they’re collocated with CMOS circuitry, then they need to be protected from any further processing steps. In other words, they need to be sealed off from the rest of the world. And wafer bonding is a common way to do that: bring another wafer (perhaps with etched features) face-to-face with the working wafer and get them to bond.

Covalent molecular bonds are the strongest; if you bring two silicon wafers together, for example, the ideal is to have the silicon atoms at the surface of each wafer bond covalently with their counterparts on the other wafer so that the whole thing starts to look like a continuous crystal. That’s the ideal.

Doing this isn’t trivial, of course, since the surfaces are likely to have imperfections and contaminants. So surface preparation has been an important part of the wafer bonding process. It has also involved intermediaries like water that establish a preliminary bond; an anneal then precipitates the reactions that result in the appropriate covalent bonds and out-diffusion of any extraneous elements.

Initially, high temperatures were required for the annealing. But, of course, anything over 450 °C won’t sit well with any CMOS that might be in place, so various surface preparation techniques have been devised to get the anneal temps down below that threshold.

But even these temperatures can be an issue for bonding unlike materials, or for wafers that have unlike materials in the stack, where stresses can result from differing rates of thermal expansion during the anneal process.

EVG has recently announced a new way of preparing the surface so that covalent bonding occurs immediately, at room temperature. To be clear, they have announced that they have this new process; they haven’t announced what it is; they’re still being coy on that. This eliminates the annealing step completely, and therefore the thermal expansion issue as well.

Equipment using this new technique should ship sometime this year. You can find out more in their release.

Leave a Reply

featured blogs
Dec 19, 2024
Explore Concurrent Multiprotocol and examine the distinctions between CMP single channel, CMP with concurrent listening, and CMP with BLE Dynamic Multiprotocol....
Dec 20, 2024
Do you think the proton is formed from three quarks? Think again. It may be made from five, two of which are heavier than the proton itself!...

featured video

Introducing FPGAi – Innovations Unlocked by AI-enabled FPGAs

Sponsored by Intel

Altera Innovators Day presentation by Ilya Ganusov showing the advantages of FPGAs for implementing AI-based Systems. See additional videos on AI and other Altera Innovators Day in Altera’s YouTube channel playlists.

Learn more about FPGAs for Artificial Intelligence here

featured chalk talk

Outgassing: The Hidden Danger in Harsh Environments
In this episode of Chalk Talk, Amelia Dalton and Scott Miller from Cinch Connectivity chat about the what, where, and how of outgassing in space applications. They explore a variety of issues that can be caused by outgassing in these applications and how you can mitigate outgassing in space applications with Cinch Connectivity interconnect solutions. 
May 7, 2024
39,316 views