editor's blog
Subscribe Now

One + One > Two

The latest, greatest mobile standards appear to be beastly affairs. Added to the old ones, and the number of algorithms that a poor cellphone – even a smart one – has to manage becomes pretty daunting.

And features like MIMO – various permutations and combinations of multiple antennae on the sending and receiving sides – make for an array of possible algorithms that CEVA says can only be managed through a software approach. That is, you load the software you need for the algorithm required at the moment rather than hard-code every possible variant, which would simply take too much silicon.

CEVA attacks this market with their XC architecture, and they recently beefed it up by announcing a multicore version. “OK, big deal,” you might say. “I had one core, now I can have more than one. I could do that before by instantiating more than one.”

Yes and no. Going truly multicore means one more huge addition to the architecture, most of which operates in the background: cache coherency. So even if that was all they had done, that’s a lot of work in its own right.

But they appear to have gone beyond that, adding packet management and scheduling hardware, along with design tools that understands higher-level concepts like queues and buffers. And frankly, at least conceptually, this starts to look a lot like a Cavium OCTEON chip, only with DSPs instead of RISC CPUs.

But, of course, this is IP, not hard silicon (although they have emulation boards). So you can configure things any way you want – including homogeneous and heterogeneous architectures, the latter blending DSPs and CPUs if desired.

They’ve also added floating point support; they point to the MIMO algorithms as a particularly compelling reason to move beyond fixed-point.

So it’s a larger leap than just adding another core or two. You can see more of the speeds and feeds in their release.

Leave a Reply

featured blogs
Nov 15, 2024
Explore the benefits of Delta DFU (device firmware update), its impact on firmware update efficiency, and results from real ota updates in IoT devices....
Nov 13, 2024
Implementing the classic 'hand coming out of bowl' when you can see there's no one under the table is very tempting'¦...

featured video

Introducing FPGAi – Innovations Unlocked by AI-enabled FPGAs

Sponsored by Intel

Altera Innovators Day presentation by Ilya Ganusov showing the advantages of FPGAs for implementing AI-based Systems. See additional videos on AI and other Altera Innovators Day in Altera’s YouTube channel playlists.

Learn more about FPGAs for Artificial Intelligence here

featured paper

Quantized Neural Networks for FPGA Inference

Sponsored by Intel

Implementing a low precision network in FPGA hardware for efficient inferencing provides numerous advantages when it comes to meeting demanding specifications. The increased flexibility allows optimization of throughput, overall power consumption, resource usage, device size, TOPs/watt, and deterministic latency. These are important benefits where scaling and efficiency are inherent requirements of the application.

Click to read more

featured chalk talk

Accelerating Tapeouts with Synopsys Cloud and AI
Sponsored by Synopsys
In this episode of Chalk Talk, Amelia Dalton and Vikram Bhatia from Synopsys explore how you can accelerate your next tapeout with Synopsys Cloud and AI. They also discuss new enhancements and customer use cases that leverage AI with hybrid cloud deployment scenarios, and how this platform can help CAD managers and engineers reduce licensing overheads and seamlessly run complex EDA design flows through Synopsys Cloud.
Jul 8, 2024
36,170 views