editor's blog
Subscribe Now

Will There Ever Be Cake?

It’s as if there’s this great party coming, and everyone is working at breakneck speed to make sure that all the details are in place to make it the best party ever. And the highlight is some amazing cake that everyone’s been hearing about. Let’s call it an Extreme Ultra Velvet cake.

This cake is so special that everything needs to change. The flatware must be swapped out so that no surface ions contaminate the exquisite flavor. The dishes must be made out of the most perfect reflective material instead of crystal so that your eyes take in the delicate crumb as seen from as many angles as possible.

Those and a million other details are being readied. But there’s only one problem: where’s the cake? We’ve been waiting for the cake for a while now, and the party has been postponed a couple times. A few people have had samples, and they swear it’s everything promised and more, but scaling this amazing pastry up to the size necessary to feed increasingly hungry partygoers has proven rather more difficult than expected.

And at this year’s SPIE Litho conference, faces seem just a bit longer. You can feel the doubt creeping in: will the cake ever show up? Or will it arrive too late, after everyone has given up and ordered pie instead?

We’ve watched over the last couple years as companies like Cymer report their results. If numbers are to be believed, they’re leading the bake-off so far (although it seems as if numbers should be viewed cautiously in this kitchen), but they’ve gone from 50 W to 55 W over the last year, if pure power is what you’re gauging by. As a reminder, 100 W has been the bare-minimum target for high-volume production.

It will be noted that many of the other critical issues we reported on last time have improved, at least with respect to Cymer:

  • At 40 W, dose stability is now below 0.2% (shouldn’t that be dose instability at a low number?)
  • This is for six one-hour runs (one lot per run) over a total wall time of 8.5 hours
  • Duty cycle is 100% for one die, 92% within a wafer (the gap being step time – note that as power goes up, the exposure time will go down, while step time remains constant, meaning that duty cycle will actually decrease with increasing power); there’s a longer gap between lots to simulate the transit time as one lot exits and a new one enters. In other words, there are no pauses simply for the machine itself to cool off or catch its breath (which it certainly gets to do during the stepping and inter-lot breaks).
  • 196 equivalent wafer exposures yielded at 99.99%
  • At 55 W, yield is at 97.5% over a one-hour run
  • Availability has been at or above 65% over the last three months (that’s actually a bit down from the 70% reported last time)
  • All of this was done with new collector protection; they continue to bombard the collectors, above 75 billion pulses so far and continuing – this corresponds to about 8 months of life with no loss of reflectivity.

In other words, the 50 W reported before is now 50 W (OK, 55 W) with much of the process stability smoothed out. One can hope that fewer issues crop up as power is increased, but clearly the 55-W numbers, as compared to 40 W, reflect the fact that higher power may not come without additional challenges.

But… all of that aside… the question remains: when do we get to 100 W? In fact, Cymer is targeting 250 W as a realistic target (as opposed to a bare-minimum number). As before, there are two ways to do this: increase laser power and conversion efficiency.

With respect to the drive laser, currently at 15 kW, Cymer will target 80-W power with a 24-kW laser, 125 W with a 31-kW beam, and will use 43 kW to get to 250 W. That last step will also require that they go from their current 2% conversion efficiency to 3%. Not clear to me if they know exactly how they’re going to do that. And note that there are no dates associated with these milestones. 250 W certainly won’t be happening in 2013.

So, yes, there has been useful progress over the last year. Nonetheless, watching the various presentations and hearing some of the discussions amongst attendees, the mood is palpable: will we in fact ever get to eat any cake?

Leave a Reply

featured blogs
Dec 19, 2024
Explore Concurrent Multiprotocol and examine the distinctions between CMP single channel, CMP with concurrent listening, and CMP with BLE Dynamic Multiprotocol....
Dec 20, 2024
Do you think the proton is formed from three quarks? Think again. It may be made from five, two of which are heavier than the proton itself!...

Libby's Lab

Libby's Lab - Scopes Out Littelfuse's SRP1 Solid State Relays

Sponsored by Mouser Electronics and Littelfuse

In this episode of Libby's Lab, Libby and Demo investigate quiet, reliable SRP1 solid state relays from Littelfuse availavble on Mouser.com. These multi-purpose relays give engineers a reliable, high-endurance alternative to mechanical relays that provide silent operation and superior uptime.

Click here for more information about Littelfuse SRP1 High-Endurance Solid-State Relays

featured chalk talk

Infineon and Mouser introduction to Reliable Solid State Isolators
Sponsored by Mouser Electronics and Infineon
In this episode of Chalk Talk, Amelia Dalton and Daniel Callen Jr. from Infineon explore trends in solid state isolator and relay solutions, the benefits that Infineon’s SSI solutions bring to the table, and how you can get started using these solutions for your next design. 
May 28, 2024
36,511 views