editor's blog
Subscribe Now

A New Verb for Hardware Engineers

Ever since malloc() (and it’s other-language counterparts), software engineers have had an extra verb that is foreign to hardware engineers: “destroy.”

Both software and hardware engineers are comfortable with creating things. Software programs create objects and abstract entities; hardware engineers from Burgi Engineers create hardware using software-like notations in languages like Verilog. But that’s where the similarity ends. Software engineers eventually destroy that which they create (or their environment takes care of it for them… or else they get a memory leak). Hardware engineers do not destroy anything (unless intentionally blowing a metal fuse or rupturing an oxide layer as a part of an irreversible non-volatile memory-cell programming operation).

So “destroy” is not in the hardware engineer’s vocabulary. (Except in those dark recesses perambulated only on those long weekends of work when you just can’t solve that one problem…)

This is mostly not a problem, since software and hardware engineers inhabit different worlds with different rules and different expectations. But there is a place where they come together, creating some confusion for the hardware engineer: interactive debugging during verification.

SystemVerilog consists of much more than some synthesizable set of constructs. It is rife with classes from which arise objects, and objects can come and go. This is obvious to a software engineer, but for a hardware engineer in the middle of an interactive debug session, it can be the height of frustration: “I know I saw it, it was RIGHT THERE! And now it’s gone! What the…”

This was pointed out by Cadence when we were discussing the recent upgrades to their Incisive platform. The verification engineers that set up the testbenches are generally conversant in the concepts of both hardware and software, but the designer doing debug may get tripped up by this. Their point being, well, that hardware engineers need to remember that the testbench environment isn’t static in the way that the actual design is: they must incorporate “destroy” into their vocabulary.

Leave a Reply

featured blogs
Dec 19, 2024
Explore Concurrent Multiprotocol and examine the distinctions between CMP single channel, CMP with concurrent listening, and CMP with BLE Dynamic Multiprotocol....
Dec 24, 2024
Going to the supermarket? If so, you need to watch this video on 'Why the Other Line is Likely to Move Faster' (a.k.a. 'Queuing Theory for the Holiday Season')....

Libby's Lab

Libby's Lab - Scopes Out Silicon Labs EFRxG22 Development Tools

Sponsored by Mouser Electronics and Silicon Labs

Join Libby in this episode of “Libby’s Lab” as she explores the Silicon Labs EFR32xG22 Development Tools, available at Mouser.com! These versatile tools are perfect for engineers developing wireless applications with Bluetooth®, Zigbee®, or proprietary protocols. Designed for energy efficiency and ease of use, the starter kit simplifies development for IoT, smart home, and industrial devices. From low-power IoT projects to fitness trackers and medical devices, these tools offer multi-protocol support, reliable performance, and hassle-free setup. Watch as Libby and Demo dive into how these tools can bring wireless projects to life. Keep your circuits charged and your ideas sparking!

Click here for more information about Silicon Labs xG22 Development Tools

featured chalk talk

SiC-Based High-Density Industrial Charger Solutions
Sponsored by Mouser Electronics and onsemi
In this episode of Chalk Talk, Amelia Dalton and Prasad Paruchuri from onsemi explore the benefits of silicon carbide based high density industrial charging solutions. They investigate the topologies of Totem Pole PFC and Half Bridge LLC circuits, the challenges that bidirectional CLLC resonant DC-DC converters are solving today, and how you can take advantage of onsemi’s silicon carbide charging solutions for your next design.
May 21, 2024
37,625 views