editor's blog
Subscribe Now

Sensing the Squish

We’re used to touch being about locating one or more fingers or items on a surface. This is inherently a 2D process. Although much more richness is being explored for the long-term, one third dimension that seems closer in is pressure: how hard are we pushing down, and can we use that to, for instance, grab an object for dragging?

At the 2011 Touch Gesture Motion conference, one company that got a fair bit of attention was Flatfrog, who uses a light-based approach, with LEDs and sensors around the screen to triangulate positions. At the 2012 Touch Gesture Motion conference, when 2D seemed so 2011, pressure was a more frequent topic of conversation. But clearly a visual technology like Flatfrog’s wouldn’t be amenable to measuring pressure since there is nothing to sense the pressure.

Unless…

If you have a squishy object like a finger, then you can use what I’ll call the squish factor to infer pressure. This is what Flatfrog does: when a finger (for example) touches down, they normalize the width of the item, and then they track as that width widens due to the squishing of the finger (or whatever). Which means that this works with materials that squish. Metal? Not so much.

You might wonder how they can resolve such small movements using an array of LEDs that are millimeters apart. For a single LED and an array of sensors, for example, the resolution might indeed be insufficient. But because they have so many LEDs, the combined measurements from all of them allow them to resolve small micro-structures.

There is a cost to this, of course, in processing: it adds about 100 million instructions per second to the processing. “Ouch!” you say? Actually, it’s not that bad: their basic processing budget without pressure is about 2 billion instructions per second, so this is about a 5% adder.

More information at their website

Leave a Reply

featured blogs
Dec 19, 2024
Explore Concurrent Multiprotocol and examine the distinctions between CMP single channel, CMP with concurrent listening, and CMP with BLE Dynamic Multiprotocol....
Dec 20, 2024
Do you think the proton is formed from three quarks? Think again. It may be made from five, two of which are heavier than the proton itself!...

featured video

Introducing FPGAi – Innovations Unlocked by AI-enabled FPGAs

Sponsored by Intel

Altera Innovators Day presentation by Ilya Ganusov showing the advantages of FPGAs for implementing AI-based Systems. See additional videos on AI and other Altera Innovators Day in Altera’s YouTube channel playlists.

Learn more about FPGAs for Artificial Intelligence here

featured chalk talk

STM32 Security for IoT
Today’s modern embedded systems face a range of security risks that can stem from a variety of different sources including insecure communication protocols, hardware vulnerabilities, and physical tampering. In this episode of Chalk Talk, Amelia Dalton and Thierry Crespo from STMicroelectronics explore the biggest security challenges facing embedded designers today, the benefits of the STM32 Trust platform, and why the STM32Trust TEE Secure Manager is an IoT security game changer.
Aug 20, 2024
39,821 views