editor's blog
Subscribe Now

Do IMU-Based Remotes Work?

One of the booths I stopped by at CES was Philips, who was demonstrating their uWand. Turns out, this isn’t that new a product, having been introduced in 2009-10 (clearly I wasn’t paying attention then). In their view, the market is only now catching up to this kind of technology, as is clear with the variety of Smart TV and gaming remotes being designed and marketed.

The uWand uses a different approach than some of the other devices, which tend to be either IMU-based or regular-camera-based. The uWand relies on an IR camera in the remote, which tracks a row of 1 or more IR LEDs at the bottom of the TV screen (more LEDs providing better range and angle). In the discussion, the comparison was often made to benefits as compared to a gyroscope-based solution because gyroscopes are known to drift.

So I asked about compensated systems, where a magnetometer is used to correct for gyro drift. And another gentleman came by and flatly said that it doesn’t work. I tried to push and pull a bit; yes, magnetic anomalies complicate matters, but in a living room, you likely have a fixed set of magnetic artifacts, for the most part, so you’d think that they would be seen as a “common mode” artifact and be subject to removal. And sensor fusion is getting pretty good these days. And I’ve seen demonstrations of IMU-based remotes that seem to have good response.

Then again, I’ve never used one for a long period of time, so perhaps after an hour or two (more? less?) they need refreshing to work again. And I have seen some that need the figure-8 calibration. But, given the absolute nature of the, “It doesn’t work” declaration, I feel the need to toss the question out for discussion.

To be clear, the question is not, “Which is better, uWand or IMU-based?” The question is, “For the purposes of TV remotes, can an IMU-based system using suitable sensor fusion be made to work to the level that would satisfy a consumer?”

What say you?

Leave a Reply

featured blogs
Dec 19, 2024
Explore Concurrent Multiprotocol and examine the distinctions between CMP single channel, CMP with concurrent listening, and CMP with BLE Dynamic Multiprotocol....
Dec 24, 2024
Going to the supermarket? If so, you need to watch this video on 'Why the Other Line is Likely to Move Faster' (a.k.a. 'Queuing Theory for the Holiday Season')....

Libby's Lab

Libby's Lab - Scopes Out Silicon Labs EFRxG22 Development Tools

Sponsored by Mouser Electronics and Silicon Labs

Join Libby in this episode of “Libby’s Lab” as she explores the Silicon Labs EFR32xG22 Development Tools, available at Mouser.com! These versatile tools are perfect for engineers developing wireless applications with Bluetooth®, Zigbee®, or proprietary protocols. Designed for energy efficiency and ease of use, the starter kit simplifies development for IoT, smart home, and industrial devices. From low-power IoT projects to fitness trackers and medical devices, these tools offer multi-protocol support, reliable performance, and hassle-free setup. Watch as Libby and Demo dive into how these tools can bring wireless projects to life. Keep your circuits charged and your ideas sparking!

Click here for more information about Silicon Labs xG22 Development Tools

featured chalk talk

Introducing the Next Generation in Electronic Systems Design
In this episode of Chalk Talk, David Wiens from Siemens and Amelia Dalton explore the role that AI, cloud connectivity and security will play for the future of electronic system design and how Siemens is furthering innovation in this area with its integrated suite of design tools.
Dec 3, 2024
17,425 views