editor's blog
Subscribe Now

An Orientation Sensor

We now have a new category in the IMU world: Bosch Sensortec has announced the first of what they call Application-Specific Sensor Nodes, or ASSNs. They have dubbed this particular device an Absolute Orientation Sensor. It looks strikingly like an all-in-one sensor hub, with an accelerometer, a gyro, a magnetometer, and a 32-bit ARM-based microcontroller (source not disclosed).

The difference is that a sensor hub per se leaves the software to be executed on the micro pretty wide open for the user to define. The BNO055, by contrast, is really intended to combine the motion sensors via built-in fusion on the micro so that it looks like a higher-level orientation sensor. It essentially bumps up the level of abstraction, burying the sensors and micro inside something more akin to a black box. Data is communicated pre-computed as quaternions rather than raw.

Power is addressed by allowing a stand-by mode where the gyroscope – always the power hog – can be put to sleep. When the accelerometer detects motion, it can then wake the gyro – which responds in a few nanoseconds – so that it can intercept any rotational motion. This assumes, of course, that any rotation missed during that wake-up is negligible. (Quick math sanity check says that if an object rotates, say, 6 degrees in 10 ns, then that’s 60 degrees in 100 ns or a full rotation in 600 ns… divide by 10 to get 60 ns, multiply by a billion to get 60 s, so that would be 100,000,000 RPM… yeah, not even Washington DC can spin anything that fast…)

So full power is around 11 or 12 mA; in motion-wakeable stand-by it goes down to 150 µA. If you put everything to sleep and wake it through I2C instead, you can get down to the 20-µA range.

You can find more on this device in their release

Leave a Reply

featured blogs
Nov 12, 2024
The release of Matter 1.4 brings feature updates like long idle time, Matter-certified HRAP devices, improved ecosystem support, and new Matter device types....
Nov 13, 2024
Implementing the classic 'hand coming out of bowl' when you can see there's no one under the table is very tempting'¦...

featured video

Introducing FPGAi – Innovations Unlocked by AI-enabled FPGAs

Sponsored by Intel

Altera Innovators Day presentation by Ilya Ganusov showing the advantages of FPGAs for implementing AI-based Systems. See additional videos on AI and other Altera Innovators Day in Altera’s YouTube channel playlists.

Learn more about FPGAs for Artificial Intelligence here

featured paper

Quantized Neural Networks for FPGA Inference

Sponsored by Intel

Implementing a low precision network in FPGA hardware for efficient inferencing provides numerous advantages when it comes to meeting demanding specifications. The increased flexibility allows optimization of throughput, overall power consumption, resource usage, device size, TOPs/watt, and deterministic latency. These are important benefits where scaling and efficiency are inherent requirements of the application.

Click to read more

featured chalk talk

Accelerating Tapeouts with Synopsys Cloud and AI
Sponsored by Synopsys
In this episode of Chalk Talk, Amelia Dalton and Vikram Bhatia from Synopsys explore how you can accelerate your next tapeout with Synopsys Cloud and AI. They also discuss new enhancements and customer use cases that leverage AI with hybrid cloud deployment scenarios, and how this platform can help CAD managers and engineers reduce licensing overheads and seamlessly run complex EDA design flows through Synopsys Cloud.
Jul 8, 2024
34,350 views