editor's blog
Subscribe Now

From Relative to Absolute Altitude

GPS is notoriously inaccurate when it comes to vertical positioning. And it disappears entirely inside buildings. So pressure sensors are used to help calculate vertical positioning.

The thing is, a pressure sensor decides your altitude based on the pressure of the air, so it must be comparing it to some baseline. The problem with that is that there is no firm baseline pressure: weather, as we all know, affects the air pressure.

That means that pressure is, first of all, a moving target. Secondly, we can never really know our absolute altitude, only relative.

I posed these questions in a conversation with the Bosch Sensortec team at the MEMS Executive Congress where they were discussing the upcoming release of their new pressure sensors. They talk about being able to handle absolute altitude, so the obvious question is, what about the weather?

There are two pieces to the answer. The first deals with the fact that the baseline pressure isn’t constant. However, compared to pressure changes due to typical motion, the weather pressure changes extremely slowly. (If it’s changing so fast that it could be confused with you moving around, then navigation error is the least of your problems.) From a signal standpoint, the pressure changes of interest can be extracted with a high-pass filter, at least conceptually. More simply, you can think of it as a differential-mode measurement, with actual weather pressure being a common-mode error that’s subtracted out.

That allows you to get a reasonably accurate measure of relative altitude, but what about absolute altitude? Now you need to compare yourself to a sea-level baseline, and that baseline does depend on the weather. Well, there’s no magic available on this. The Bosch Sensortec software can get the data necessary to correct for the current sea-level pressure from the internet. Given that external sanity check, a pressure sensor can provide absolute altitude.

There are a couple other “faster-twitch” effects that can confuse pressure interpretation. The first is simply the fact that some buildings or rooms may have higher or lower air pressure based on the air conditioning or intentional implementation of things like positive pressure for a clean room. Even just opening a door can send a pressure surge. These effects won’t be eliminated or “de-convoluted” in the same way that weather impacts can be. Instead, the pressure data must be fused with other data to decide whether the pressure change reflects a change in altitude. Specifically, if an inertial sensor shows no vertical motion, then the pressure change can be “ignored” (although now it becomes the new baseline).

Pressure measurements also depend on temperature: a local temperature change can register as a pressure change when in fact the pressure didn’t change. Good temperature compensation is required (which is essentially data fusion between a thermometer and a pressure sensor); a pressure sensor less affected by temperature (as is claimed by Bosch Sensortec for their new BMP280) can also help.

Leave a Reply

featured blogs
Dec 19, 2024
Explore Concurrent Multiprotocol and examine the distinctions between CMP single channel, CMP with concurrent listening, and CMP with BLE Dynamic Multiprotocol....
Dec 20, 2024
Do you think the proton is formed from three quarks? Think again. It may be made from five, two of which are heavier than the proton itself!...

Libby's Lab

Libby's Lab - Scopes Out Littelfuse's SRP1 Solid State Relays

Sponsored by Mouser Electronics and Littelfuse

In this episode of Libby's Lab, Libby and Demo investigate quiet, reliable SRP1 solid state relays from Littelfuse availavble on Mouser.com. These multi-purpose relays give engineers a reliable, high-endurance alternative to mechanical relays that provide silent operation and superior uptime.

Click here for more information about Littelfuse SRP1 High-Endurance Solid-State Relays

featured chalk talk

Calibre DesignEnhancer: Layout Modifications that Improve your Design
In this episode of Chalk Talk, Jeff Wilson from Siemens and Amelia Dalton investigate the variety of benefits that the Calibre DesignEnhancer brings to IC design and how this tool suite can be used to find and fix critical design stage issues. They also explore how the Calibre DesignEnhancer can Identify and resolve issues early in design flow with sign-off quality solutions and how you can utilize Calibre DesignEnhancer for your next design.
Dec 16, 2024
3,120 views