editor's blog
Subscribe Now

From Relative to Absolute Altitude

GPS is notoriously inaccurate when it comes to vertical positioning. And it disappears entirely inside buildings. So pressure sensors are used to help calculate vertical positioning.

The thing is, a pressure sensor decides your altitude based on the pressure of the air, so it must be comparing it to some baseline. The problem with that is that there is no firm baseline pressure: weather, as we all know, affects the air pressure.

That means that pressure is, first of all, a moving target. Secondly, we can never really know our absolute altitude, only relative.

I posed these questions in a conversation with the Bosch Sensortec team at the MEMS Executive Congress where they were discussing the upcoming release of their new pressure sensors. They talk about being able to handle absolute altitude, so the obvious question is, what about the weather?

There are two pieces to the answer. The first deals with the fact that the baseline pressure isn’t constant. However, compared to pressure changes due to typical motion, the weather pressure changes extremely slowly. (If it’s changing so fast that it could be confused with you moving around, then navigation error is the least of your problems.) From a signal standpoint, the pressure changes of interest can be extracted with a high-pass filter, at least conceptually. More simply, you can think of it as a differential-mode measurement, with actual weather pressure being a common-mode error that’s subtracted out.

That allows you to get a reasonably accurate measure of relative altitude, but what about absolute altitude? Now you need to compare yourself to a sea-level baseline, and that baseline does depend on the weather. Well, there’s no magic available on this. The Bosch Sensortec software can get the data necessary to correct for the current sea-level pressure from the internet. Given that external sanity check, a pressure sensor can provide absolute altitude.

There are a couple other “faster-twitch” effects that can confuse pressure interpretation. The first is simply the fact that some buildings or rooms may have higher or lower air pressure based on the air conditioning or intentional implementation of things like positive pressure for a clean room. Even just opening a door can send a pressure surge. These effects won’t be eliminated or “de-convoluted” in the same way that weather impacts can be. Instead, the pressure data must be fused with other data to decide whether the pressure change reflects a change in altitude. Specifically, if an inertial sensor shows no vertical motion, then the pressure change can be “ignored” (although now it becomes the new baseline).

Pressure measurements also depend on temperature: a local temperature change can register as a pressure change when in fact the pressure didn’t change. Good temperature compensation is required (which is essentially data fusion between a thermometer and a pressure sensor); a pressure sensor less affected by temperature (as is claimed by Bosch Sensortec for their new BMP280) can also help.

Leave a Reply

featured blogs
Mar 27, 2025
I have to say that I've been blown away by the quality of the sound from my bone conduction headphones from H2O Audio (they even work if you're swimming)....

Libby's Lab

Arduino Portenta Environmental Monitoring Bundle

Sponsored by Mouser Electronics and Arduino

Join Libby and Demo in this episode of “Libby’s Lab” as they explore the Arduino Portenta Environmental Monitoring Bundle, available at Mouser.com! This bundle is perfect for engineers requiring environmental data such as temperature, humidity, and pressure. Designed for ease of use, the bundle is great for IoT, smart home, and industrial devices, and it includes WiFi and Bluetooth connectivity. Keep your circuits charged and your ideas sparking!

Click here for more information about Arduino Portenta Environmental Monitoring Bundle

featured chalk talk

Advances in Solar Energy and Battery Technology
Sponsored by Mouser Electronics and onsemi
Passive components will play an important part in the next generation of solar and energy storage systems. In this episode of Chalk Talk, Amelia Dalton, Prasad Paruchuri from onsemi, Walter Fusto from Würth Elektronik explore trends, challenges and solutions in solar and energy storage systems. They also examine EMI considerations for energy storage systems, the benefits that battery management systems bring to these kinds of designs and how passive components can make all the difference in solar and energy storage systems.
Aug 13, 2024
54,688 views