editor's blog
Subscribe Now

Fusing the Little Details

It’s always struck me that there seem to be two critical elements to sensor fusion. There’s the part that can be resolved with math – for instance, compensating a magnetometer reading to account for the tilt as measured by an accelerometer – and then there’s the heuristic part. The latter deals with, for example, deciding that your gyro reading makes no sense and deferring to the compass instead to give you a heading. And while the math in the first part is more or less universal for all players, the heuristics would provide more of an opportunity for differentiation.

In a conversation at the recent MEMS Executive Congress, Movea’s Bryan Hoadley noted that there’s actually more to it than that. First of all, I should note that they’re touting the phrase “data fusion” rather than just “simple” sensor fusion. That would partly be due to the fact that they’re trying to raise the level of abstraction far above simple low-level fusion (as indicated by their periodic table and the fact that they’re doing analysis on running gaits and tennis serves), but also because, in many cases, data is included that doesn’t come from a sensor.

The classic example of that would be a navigation algorithm that not only uses IMU data, but also GPS or even speedometer data. (OK, I guess a speedometer is a sensor, albeit a pedestrian one… or… wait, no, a pedometer would be pedestrian… GPS? That’s less obvious.) Add map data and now you’re unquestionably fusing more than sensor data. You’re fusing data, some of which comes from sensors.

There’s one other element that comes along with this, according to Mr. Hoadley. It may sound trivial or inconsequential, but it matters, and it’s kind of like taking a look back into the kitchen of your favorite gourmet restaurant: it’s way less glamorous than the dining room. In addition to the math and the heuristics are the logistics of managing all the data and the data formats correctly and efficiently.

(Reminds me of the college programming project where I took the core assignment and simply added some I/O to it that wasn’t required. A couple ill-conceived all-nighters later and my code was 10% algorithmic stuff that mattered and 90% crap for getting data in and out. Which was worth, like, 3% extra in bonus credit. My first lesson in ROI.)

The point being, there’s more to the cooking than creating pretty stacks of elegant food (which will topple when the first fork hits it); there’s lots of boring, mundane food prep.

I’ve actually asked the question before as to whether these data formats could be simplified by any sorts of standards or unification; it’s one area where there doesn’t seem to be enough pain to worry. Either that, or the early movers have already solved the problem themselves and the chaos now acts as an entry barrier to others.

Leave a Reply

featured blogs
Mar 27, 2025
I have to say that I've been blown away by the quality of the sound from my bone conduction headphones from H2O Audio (they even work if you're swimming)....

Libby's Lab

Arduino Portenta Environmental Monitoring Bundle

Sponsored by Mouser Electronics and Arduino

Join Libby and Demo in this episode of “Libby’s Lab” as they explore the Arduino Portenta Environmental Monitoring Bundle, available at Mouser.com! This bundle is perfect for engineers requiring environmental data such as temperature, humidity, and pressure. Designed for ease of use, the bundle is great for IoT, smart home, and industrial devices, and it includes WiFi and Bluetooth connectivity. Keep your circuits charged and your ideas sparking!

Click here for more information about Arduino Portenta Environmental Monitoring Bundle

featured chalk talk

Vector Funnel Methodology for Power Analysis from Emulation to RTL to Signoff
Sponsored by Synopsys
The shift left methodology can help lower power throughout the electronic design cycle. In this episode of Chalk Talk, William Ruby from Synopsys and Amelia Dalton explore the biggest energy efficiency design challenges facing engineers today, how Synopsys can help solve a variety of energy efficiency design challenges and how the shift left methodology can enable consistent power efficiency and power reduction.
Jul 29, 2024
207,466 views