editor's blog
Subscribe Now

Coast-to-Coast Nanotechnology

Much of the early work on technology is, of course, done in universities. And schools are increasingly collaborating to be more effective. Cornell and Stanford, in particular, are effecting a bicoastal partnership (OK, to those on the East Coast, Ithaca is probably far enough west – being on the foreign side of the Hudson at a latitude where the coast proper has migrated even further east – to qualify as also being on the West Coast, but bear with me.)

They gave a bit of a presentation recently showing what they’re working on. It’s always interesting to see what’s cooking in these kinds of projects. And some interesting work is underway, although a bit more time was devoted to the more political side of things than I found useful (you know, the, “Check us out, how well we’re working together, and thanks to all our funders and please keep sending money” thing, although it’s not quite worded that way. Sorry… my cynical side is showing a bit…)

So the glimpses of actual work were brief, but there are some cool things happening:

  • They’re working on a nano-particle-based photoresist for EUV use. These particles are 2-3 nm in diameter and are based on metal oxides. The idea is that an organic shell providing “photochemical cross-linking” encases an  inorganic core (the metal oxides, like HfO2 or ZrO2) that resist the etch. They’re able to create nice sharp 20-nm lines at this point. (Ober Group)
  • They’re working on better polymers for organic electronics. One example shows the incorporation of fluorine to create polymers that aren’t damaged by the organic solvents frequently used in manufacturing. This makes them immersible and easier to work with. (Ober Group)
  • They’re working on the integration of LEDs deep into the chip. (Cornell Nanophotonics Group)
  • In a cross between photonics and MEMS (or NEMS), they’re looking at micro-mechanical elements that can be moved by shining photons rather than by some other physical actuator. They call this “optomechanics.” (Cornell Nanophotonics Group)
  • “Transformation optics” is the cryptic name given for such things as “cloaking” – that is, making stuff invisible. This involves nano-particles, and is an area of pursuit here. (Cornell Nanophotonics Group)
  • They’re also working on fabrics that incorporate nano-materials, primarily by coating the native fibers with a material that has some desired property. Part of it is to be resistant to bacteria (which makes sense for hospital clothing, but, put on normal streetwear, would continue, with unabated hubris, man’s valiant attempts to vanquish all bacteria – even as we discover more about their benefits); fabrics with electronic properties are, of course, also in the works. (Textiles Nanotechnology Laboratory)
  • There was also discussion of a “smart bandage” that could communicate remotely, monitor a wound, and administer medicine without the need to rip it up. Imagine someday someone using the by-then idiomatic expression “ripped open that wound” and wondering, “Whatever does that mean anyway? Grampa, did they used to do that in the olden days?”

Of course, before any of this makes it into the real world, they’re also trying to suss out the environmental implications of the particles they’re creating. This stuff doesn’t exist in nature, so there are presumably no mechanisms for dealing with them in living organisms – which could be good or bad. Which is why we need to look into it.

 

Leave a Reply

featured blogs
Nov 22, 2024
We're providing every session and keynote from Works With 2024 on-demand. It's the only place wireless IoT developers can access hands-on training for free....
Nov 22, 2024
I just saw a video on YouTube'”it's a few very funny minutes from a show by an engineer who transitioned into being a comedian...

featured video

Introducing FPGAi – Innovations Unlocked by AI-enabled FPGAs

Sponsored by Intel

Altera Innovators Day presentation by Ilya Ganusov showing the advantages of FPGAs for implementing AI-based Systems. See additional videos on AI and other Altera Innovators Day in Altera’s YouTube channel playlists.

Learn more about FPGAs for Artificial Intelligence here

featured paper

Quantized Neural Networks for FPGA Inference

Sponsored by Intel

Implementing a low precision network in FPGA hardware for efficient inferencing provides numerous advantages when it comes to meeting demanding specifications. The increased flexibility allows optimization of throughput, overall power consumption, resource usage, device size, TOPs/watt, and deterministic latency. These are important benefits where scaling and efficiency are inherent requirements of the application.

Click to read more

featured chalk talk

Datalogging in Automotive
Sponsored by Infineon
In this episode of Chalk Talk, Amelia Dalton and Harsha Medu from Infineon examine the value of data logging in automotive applications. They also explore the benefits of event data recorders and how these technologies will shape the future of automotive travel.
Jan 2, 2024
58,336 views