editor's blog
Subscribe Now

EUV Movement Towards HVM

When last we talked with Cymer, they had just announced their PrePulse technology that gets more of the energy out of the droplets they blast with a laser. They had achieved 50-W output.

That’s only half-way to what’s needed for production, and, at the time, it was an “open-loop” result. That is, not something that could be repeated over and over in a production setting.

In my discussion with them at Semicon West, they now have 50 W working on a sustained, closed-loop basis (for five hours). And they have achieved 90 W in short open-loop bursts.

But there are lots of other characteristics besides simple power that are important for production viability.

  • Duty cycle: after they run the system for a while, things heat up. Literally. For that and a number of reasons, they have to give the machine a break or else the power rolls off. Right now they’re running at 40% duty cycle; they’re working to get that (closer) to 100%.
  • Dose stability: their five-hour runs have resulted in 90% of dice having less than 1% dose error.
  • Availability: if the machine is always down or needs lots of maintenance, well, that’s a problem. They’re now claiming 70% up-time.
  • Collector longevity: at some point, having been bombarded with pulses, the collector will start to lose reflectivity. It would then need to be replaced – meaning downtime and cost. So far they say that they’ve gone above 30 billion pulses without seeing any reflectivity degradation.

Meanwhile, efforts to increase power depend on three separate factors: input power, “conversion” efficiency – how much of that input power gets released from a pulsed droplet, and collector efficiency.

Their PrePulse technology has satisfied them on the second item; their efforts at this point are in increasing the input power (they’ve demonstrated up to 17 kW) and improving collector efficiency. This takes place in what they call their “HVM II” model, which is being integrated now.

Leave a Reply

featured blogs
Dec 19, 2024
Explore Concurrent Multiprotocol and examine the distinctions between CMP single channel, CMP with concurrent listening, and CMP with BLE Dynamic Multiprotocol....
Dec 20, 2024
Do you think the proton is formed from three quarks? Think again. It may be made from five, two of which are heavier than the proton itself!...

Libby's Lab

Libby's Lab - Scopes Out Silicon Labs EFRxG22 Development Tools

Sponsored by Mouser Electronics and Silicon Labs

Join Libby in this episode of “Libby’s Lab” as she explores the Silicon Labs EFR32xG22 Development Tools, available at Mouser.com! These versatile tools are perfect for engineers developing wireless applications with Bluetooth®, Zigbee®, or proprietary protocols. Designed for energy efficiency and ease of use, the starter kit simplifies development for IoT, smart home, and industrial devices. From low-power IoT projects to fitness trackers and medical devices, these tools offer multi-protocol support, reliable performance, and hassle-free setup. Watch as Libby and Demo dive into how these tools can bring wireless projects to life. Keep your circuits charged and your ideas sparking!

Click here for more information about Silicon Labs xG22 Development Tools

featured chalk talk

High Power Charging Inlets
All major truck and bus OEMs will be launching electric vehicle platforms within the next few years and in order to keep pace with on-highway and off-highway EV innovation, our charging inlets must also provide the voltage, current and charging requirements needed for these vehicles. In this episode of Chalk Talk, Amelia Dalton and Drew Reetz from TE Connectivity investigate charging inlet design considerations for the next generation of industrial and commercial transportation, the differences between AC only charging and fast charge and high power charging inlets, and the benefits that TE Connectivity’s ICT high power charging inlets bring to these kinds of designs.
Aug 30, 2024
36,124 views