editor's blog
Subscribe Now

Atmel Takes On the Actual Screen

We’ve talked about Atmel’s touch activities before, both with respect to their controllers and their stylus venture (which also features their controllers). To date, they haven’t been overtly participating in the business of creating actual touchscreens.

But, behind the scenes, they’ve spent the last couple years developing a new projected capacitance (P-CAP) technology called XSense that can be printed onto flexible rolls and used for user interfaces of a much sleeker variety than just your basic flat, brittle screen. In addition to the obvious attractiveness of flexibility, they boast two benefits: linearity and scalability.

Linearity (which also helps scalability) simply means that you can determine where a touch event occurred more accurately. They claim to be able to capture handwriting with a stylus.

Scalability means that they can go to larger screens. This has been an issue with P-CAP technology to some extent. Atmel says that a major limiting factor has been yield, especially cracks in the metal traces. In fact, you’d think that, with a flexible material, cracking might be even more of an issue.

They say they’ve addressed this in a number of ways:

–          They have a proprietary grid pattern (they didn’t say what); apparently this tends to be part of touchscreen secret sauce in general;

–          They have a proprietary manufacturing flow for laying the copper lines that they use (on which they didn’t elaborate, such caginess being part of the “proprietary” thing);

–          And they use redundancy: it’s not that they simply don’t get cracks, but they can tolerate some cracking without it affecting yield.

They currently have requests for sizes up to 32”. They could go bigger – the only limitation is the size of the roll-to-roll machines; they’re not limited by the technology.

One other benefit of the flexible nature of the material is that it can wrap over the edges of the screen, making it possible to create a unit without a bezel (which seems to be something people are always looking for).

You can get more info in their release

Leave a Reply

featured blogs
Dec 19, 2024
Explore Concurrent Multiprotocol and examine the distinctions between CMP single channel, CMP with concurrent listening, and CMP with BLE Dynamic Multiprotocol....
Dec 20, 2024
Do you think the proton is formed from three quarks? Think again. It may be made from five, two of which are heavier than the proton itself!...

Libby's Lab

Libby's Lab - Scopes Out Silicon Labs EFRxG22 Development Tools

Sponsored by Mouser Electronics and Silicon Labs

Join Libby in this episode of “Libby’s Lab” as she explores the Silicon Labs EFR32xG22 Development Tools, available at Mouser.com! These versatile tools are perfect for engineers developing wireless applications with Bluetooth®, Zigbee®, or proprietary protocols. Designed for energy efficiency and ease of use, the starter kit simplifies development for IoT, smart home, and industrial devices. From low-power IoT projects to fitness trackers and medical devices, these tools offer multi-protocol support, reliable performance, and hassle-free setup. Watch as Libby and Demo dive into how these tools can bring wireless projects to life. Keep your circuits charged and your ideas sparking!

Click here for more information about Silicon Labs xG22 Development Tools

featured chalk talk

Digi XBee® 3 Global LTE CAT 4
Sponsored by Mouser Electronics and Digi
Global functionality for cellular enhanced applications can be a complicated process. In this episode of Chalk Talk, Alec Jahnke and Amelia explore the details and benefits of Digi’s XBee 3 Global LTE CAT 4 solution. We also investigate the XBee programming process and how the over the air updates of Digi Remote Manager can help future proof your next cellular design.
Dec 17, 2024
2,018 views