editor's blog
Subscribe Now

Accounting for bondwire effects

It’s ISSCC week, and I got to see some interesting things, some of which go beyond interesting and possibly to significant. My focus was on MEMS, sensors, and emerging technologies. I’ll be following up on a number of bits and bobs here over the next several days.

In the MEMS/sensor realm, as was the case last year (where we did an entire series of sensor articles), the focus at ISSCC was on the conditioning circuits for sensors rather than the sensors themselves. The problems they solve are ever better resolution or accuracy with as little calibration as possible.

Just to start things off, the first of the papers dealt with a source of drift (or extremely low-frequency noise, since it’s reversible) in accelerometers. Most such compensations deal with non-idealities in the sensor or in the conditioning circuits themselves. But this picked on something that you might think would be a complete non-issue: the change in the capacitance contributed by the bond wires connecting the accelerometer sensor to its companion ASIC (given that they’re mostly not collocated on the same silicon) due to mechanical stress and humidity.

The reason you might not consider this to be significant is the simple fact that a packaged part usually has bond wires that are encapsulated in plastic, limiting their movement. In fact someone raised that as a question (since the experiments leading to the paper were done with exposed bond wires that could be manually deflected), and, in fairness, the paper doesn’t address how much deflection might actually be realistic. They do say, however, that a 1-µm deflection can contribute a 14-mG offset (“G” here being the gravity/acceleration G, the kind you “pull,” shown as “mg” in the paper, which looks to me too much like milligrams). A 13-µm deflection takes the offset all the way to the maximum tolerable error of 100 mG.

The other issue is absorption of moisture by the package, which changes the permittivity of the material, and hence the capacitance.

Most other sources of systematic error due to design and production can be calibrated out in the factory. These, however, cannot be. So the paper presents a means of doing this.

The main challenge is isolating only the capacitance of the bond wires and the resulting error. The approach they took was to modulate it up into a region of the spectrum that was within the low-noise portion but outside the operating signal band. They did this by applying a time-varying feedback force, measurements from which allowed them to provide a correction to the error.

A classic accelerator would have two electrostatic elements, one for forcing and one for sensing. But to save space, they (or, at least, this one) had only one. So they had to time-multiplex the correction with the normal operation of the sensor to provide continuous correction.

You can find details of the approach in Paper 11.1.

Leave a Reply

featured blogs
Dec 19, 2024
Explore Concurrent Multiprotocol and examine the distinctions between CMP single channel, CMP with concurrent listening, and CMP with BLE Dynamic Multiprotocol....
Dec 20, 2024
Do you think the proton is formed from three quarks? Think again. It may be made from five, two of which are heavier than the proton itself!...

Libby's Lab

Libby's Lab - Scopes Out Silicon Labs EFRxG22 Development Tools

Sponsored by Mouser Electronics and Silicon Labs

Join Libby in this episode of “Libby’s Lab” as she explores the Silicon Labs EFR32xG22 Development Tools, available at Mouser.com! These versatile tools are perfect for engineers developing wireless applications with Bluetooth®, Zigbee®, or proprietary protocols. Designed for energy efficiency and ease of use, the starter kit simplifies development for IoT, smart home, and industrial devices. From low-power IoT projects to fitness trackers and medical devices, these tools offer multi-protocol support, reliable performance, and hassle-free setup. Watch as Libby and Demo dive into how these tools can bring wireless projects to life. Keep your circuits charged and your ideas sparking!

Click here for more information about Silicon Labs xG22 Development Tools

featured chalk talk

From Sensor to Cloud:A Digi/SparkFun Solution
In this episode of Chalk Talk, Amelia Dalton, Mark Grierson from Digi, and Rob Reynolds from SparkFun Electronics explore how Digi and SparkFun electronics are working together to make cellular connected IoT design easier than ever before. They investigate the benefits that the Digi Remote Manager® brings to IoT design, the details of the SparkFun Digi XBee Development Kit, and how you can get started using a SparkFun Board for XBee for your next design.
May 21, 2024
37,656 views