editor's blog
Subscribe Now

MEMS Tool Upgrade

Back when we looked at CMOS-compatible MEMS, we also included a discussion of the MEMS design tools from Coventor. Those tools have just been upgraded. A few of the improvements are natural, even prosaic – 64-bit coverage, a unified GUI, improved Python support. All in the interests of performance, accuracy, and ease of use.

One more subtle change they’ve made gets to the way they do their analysis. The guts of what they provide is a set of solvers to solve the electrostatic, mechanical, and fluidic equations describing the configuration under study. Rather than being a finite element method (FEM) solver, it’s actually a boundary element method (BEM) solver, which simplifies the calculations.

Typically, in preparation for full FEM calculation, the solid will be “meshed” into tetrahedrons. In the boundary case, they mesh the surface and extrude through the solid, but a “quad” or “tet” approach can end up with some very small elements and an overall poor-quality mesh. They’ve changed to a “hex-dominant” approach, where “hex” refers to the number of sides on the solid element. A four-sided element on the surface extruded down ends up as a solid with six sides (unlike a tetrahedron, which has four). They claim that this new approach yields not only a higher-quality mesh, but also fewer elements, meaning faster calculation.

More information on their new features can be found in their release

Leave a Reply

featured blogs
Jul 1, 2025
I don't know which of these videos is better: humans playing games with water pixels or robots playing games....

Libby's Lab

Libby's Lab - Scopes out Eaton EHBSA Aluminum Organic Polymer Capacitors

Sponsored by Mouser Electronics and Eaton

Join Libby and Demo in this episode of “Libby’s Lab” as they explore the Eaton EHBSA Aluminum Organic Polymer Capacitors, available at Mouser.com! These capacitors are ideal for high-reliability and long life in demanding applications. Keep your circuits charged and your ideas sparking!

Click here for more information

featured paper

AI-based Defect Detection System that is Both High Performance and Highly Accurate Implemented in Low-cost, Low-power FPGAs

Sponsored by Altera

Learn how MAX® 10 FPGAs enable real-time, high-accuracy AI-based defect detection at the industrial edge without a GPU. This white paper explores a production-proven solution that delivers 24× higher accuracy, 488× lower latency, and 20× lower power than traditional approaches, with a compact footprint ideal for embedded vision systems.

Click to read more

featured chalk talk

Reliability: Basics & Grades
Reliability is cornerstone to all electronic designs today, but how reliability is implemented and determined can vary widely by different market segments. In this episode of Chalk Talk, Amelia Dalton and Sam Accardo from the YAGEO Group explore the definition of reliability for electronic components, investigate the different grades of reliability offered by the YAGEO Group and the various steps that the YAGEO Group is taking to ensure the greatest reliability of their components.
Aug 15, 2024
53,603 views