editor's blog
Subscribe Now

Speeding up FLASH

Most of what you hear about FLASH developments relates to capacity. But bandwidth is becoming more critical as we stream more data around – particularly for applications where FLASH is replacing a hard drive. Yes, FLASH is already faster than a disk, but moving to solid-state storage – especially in growing data-intensive areas like cloud computing – will ramp up expectations on how much we can shove down that poor memory’s throat. Digital fois gras anyone?

At least this is how Cadence sees things happening (well, except for the fois gras part). They’ve just announced support for the higher-speed ONFi 3 interface standard, which revs up access to 400 MT/s –  twice what it used to be. In theory, anyway.

However, they also claim that most implementations of ONFi 3 only achieve 85-90% or so of that theoretical performance. Cadence claims that with their IP portfolio (PHY, controller, ECC), they can achieve 95% of that 400 MT/s.

They’re also touting their ECC – it’s becoming much more important at high densities for both probabilistic and sensing sensitivity reasons. This is especially true with cells that can carry more than one bit’s worth of information: you’re measuring fine gradations of trapped charge, increasing the risk of statistical errors.

Which brings me to my kvetch of the day… terminology. SLC = single-level cell. Your standard, garden-variety memory cell – on or off. One level; one bit; two values. Then there was multi-level cell, or MLC. As far as I was concerned, this was a generic term for anything more than one. “Multi” being rather, well, generic. But no – apparently in this language “multi” means two. Well, actually, that’s not even right. The number of levels in an MLC cell, by this definition, is 4 – there are 4 levels, equivalent to 2 bits’ worth of information.

And then there’s the confusing TLC – three- (or triple-) level cell. Which is doubly confusing since “three” should qualify as part of “multi” since it’s more than one. But it’s worse than that, since a TLC doesn’t have 3 levels – it has 8 levels, 3 bits’ worth of information. Call it a TBC perhaps. Or an ELC. Or an 8LC. TLC is just wrong. And defining “multi” as 2 (or 4) is just goofy.

OK, rant over. More info on Cadence’s announcement is available on their release

Leave a Reply

featured blogs
Jul 11, 2025
Can you help me track down the source of the poem titled 'The African Tigger is Fading Away'?...

Libby's Lab

Libby's Lab - Scopes out Eaton EHBSA Aluminum Organic Polymer Capacitors

Sponsored by Mouser Electronics and Eaton

Join Libby and Demo in this episode of “Libby’s Lab” as they explore the Eaton EHBSA Aluminum Organic Polymer Capacitors, available at Mouser.com! These capacitors are ideal for high-reliability and long life in demanding applications. Keep your circuits charged and your ideas sparking!

Click here for more information

featured paper

AI-based Defect Detection System that is Both High Performance and Highly Accurate Implemented in Low-cost, Low-power FPGAs

Sponsored by Altera

Learn how MAX® 10 FPGAs enable real-time, high-accuracy AI-based defect detection at the industrial edge without a GPU. This white paper explores a production-proven solution that delivers 24× higher accuracy, 488× lower latency, and 20× lower power than traditional approaches, with a compact footprint ideal for embedded vision systems.

Click to read more

featured chalk talk

From Datasheet to Design: Picking the Perfect Operational Amplifier
In this episode of Chalk Talk, Christopher John Gozon (Goz) from Analog Devices and Amelia Dalton explore the what, where and how of operational amplifiers. They also examine roles that supply voltage, voltage offset, and input bias and input offset current play in operational amplifiers and how you can take advantage of Analog Devices’ op amp innovation for your next design. 
Jul 11, 2025
1,204 views