editor's blog
Subscribe Now

Netlogic Integrates Families

We looked at many-core processors recently, and one of the big issues with scaling up the processor count is memory access: if all of those cores need access to the same memory, then that bandwidth becomes the bottleneck. Which makes SMP with many cores very difficult without shared distributed memory structures.

Netlogic has just announced their XLP II family, following on the heels of their XLP processors that have been around for a while. XLP devices go up to 32 CPUs; XLP II goes up to 80 per device, clusterable to 640. And they explicitly claim SMP capability.

So I followed up with them to see how they manage to talk to memory fast enough to feed so many cores. And it bears saying that, assuming each core manages a different memory, it’s “only” 80 cores that have to vie for attention by a single memory manager. Their response was that they have plenty of headroom on their current 32-CPU devices, and the memory manager runs much faster on the new devices, so they believe that memory access will not get in the way.

As to running all 640 together, they have an inter-chip coherency interface to keep all processors and caches in sync. They have a tri-level caching system, although details aren’t available yet.

They are also claiming a “third-generation” inter-process messaging system to speed up the conversations that the CPUs will need to have with each other.

Above and beyond just the many-core aspects, they are also integrating a host of communication-related functions alongside, including their NETL7 knowledge-based processor, which we discussed recently.

Most technical details haven’t been made public, but there is more info on their press release.

Leave a Reply

featured blogs
Dec 19, 2024
Explore Concurrent Multiprotocol and examine the distinctions between CMP single channel, CMP with concurrent listening, and CMP with BLE Dynamic Multiprotocol....
Dec 20, 2024
Do you think the proton is formed from three quarks? Think again. It may be made from five, two of which are heavier than the proton itself!...

Libby's Lab

Libby's Lab - Scopes Out Silicon Labs EFRxG22 Development Tools

Sponsored by Mouser Electronics and Silicon Labs

Join Libby in this episode of “Libby’s Lab” as she explores the Silicon Labs EFR32xG22 Development Tools, available at Mouser.com! These versatile tools are perfect for engineers developing wireless applications with Bluetooth®, Zigbee®, or proprietary protocols. Designed for energy efficiency and ease of use, the starter kit simplifies development for IoT, smart home, and industrial devices. From low-power IoT projects to fitness trackers and medical devices, these tools offer multi-protocol support, reliable performance, and hassle-free setup. Watch as Libby and Demo dive into how these tools can bring wireless projects to life. Keep your circuits charged and your ideas sparking!

Click here for more information about Silicon Labs xG22 Development Tools

featured chalk talk

Ultra-low Power Fuel Gauging for Rechargeable Embedded Devices
Fuel gauging is a critical component of today’s rechargeable embedded devices. In this episode of Chalk Talk, Amelia Dalton and Robin Saltnes of Nordic Semiconductor explore the variety of benefits that Nordic Semiconductor’s nPM1300 PMIC brings to rechargeable embedded devices, the details of the fuel gauge system at the heart of this solution, and the five easy steps that you can take to implement this solution into your next embedded design.
May 8, 2024
39,119 views