editor's blog
Subscribe Now

Multicore and Concurrency

In this week’s multicore automation article, we talked about multicore and we talked about concurrency. It’s easy to conflate these two concepts, so an important distinction should be drawn. The terminology isn’t particularly precise here, but the notions are.

“Multicore” typically refers to a computing platform. The number associated with it is the number of cores available for running a program. This number is completely independent of the program being run (although for embedded systems, it may have been designed with a specific program in mind).

“Concurrency” is a property of a program. It reflects how easy it is to pull apart and parallelize. It has nothing to do with a computing platform. A given algorithm can be designed with more or less opportunity for concurrency.

In a perfect world, the multicore structure matches the concurrency of the program being run. In the real world, a given program may need to be made to work on a number of different platforms. The more concurrency opportunities there are in a program, the more it can be optimized for different multicore platforms. If it’s really only possible to split a program in two, then a four-core platform will be no better than a two-core platform.

For this reason, it can be beneficial to optimize your program for as much concurrency as possible so that it can be partitioned in many different ways over many different platforms.

Leave a Reply

featured blogs
May 2, 2025
I can safely say that I've never seen a wheeled-legged robot that can handle rugged terrains, muddy wetlands, and debris-strewn ruins like this...

featured paper

How Google and Intel use Calibre DesignEnhancer to reduce IR drop and improve reliability

Sponsored by Siemens Digital Industries Software

Through real-world examples from Intel and Google, we highlight how Calibre’s DesignEnhancer maximizes layout modifications while ensuring DRC compliance.

Click here for more information

featured chalk talk

Motor Control Innovation with PSOC™ Control C3
Sponsored by Mouser Electronics and Infineon
PSOC™ Control is Infineon’s newest family of MCUs developed for motor control applications. This family of high-performance Arm® Cortex®- M33 MCUs enables designers to innovate and solve complex design problems for applications like HVAC, home appliances, robotics, telecom and server power supplies, light electric vehicle chargers, solar inverters, and industrial drives. In this episode of Chalk Talk, Perfecto Martinez from Infineon and Amelia Dalton explore how Infineon’s PSOC™ Control C3 is ??enabling developers to create highly efficient and secured motor control and power systems.
May 2, 2025
3,684 views