editor's blog
Subscribe Now

Is That Any of Your Business?

Big companies have divisions. Big EDA companies have synthesis divisions and design-for-test (DFT) divisions.

Clearly the two have nothing to do with each other. They’re different technologies applied at different times in the flow.

So why in the heck would Oasys, a synthesis company (not big enough yet for divisions) announce DFT support? Sounds like a classic distraction, trying to do too much.

Actually, that’s not how they see it. In fact, since most DFT hardware can be described in RTL, you can presumably do a better job by including it early on.

They claim that their angle is the fact that they do “chip synthesis,” not “block synthesis.” Test structures are a chip-level consideration, not just for any block. Traditionally, you may have to do block-level DFT and piece it together, but that’s usually done after the main functional logic has been synthesized. So debugging at the netlist level can be really tough.

Prior to synthesis, they can also analyze the chip to make sure it’s “DFT-ready,” looking for things like fully-controllable clocks, sets, and resets. Secondarily, they can also check whether the logic is ATPG-friendly.

They don’t do their own compression, but can integrate in various third-party compression schemes as well as AMS analog blocks that already have scan chains built in.

More details in their release

Leave a Reply

featured blogs
May 2, 2025
I can safely say that I've never seen a wheeled-legged robot that can handle rugged terrains, muddy wetlands, and debris-strewn ruins like this...

featured paper

How Google and Intel use Calibre DesignEnhancer to reduce IR drop and improve reliability

Sponsored by Siemens Digital Industries Software

Through real-world examples from Intel and Google, we highlight how Calibre’s DesignEnhancer maximizes layout modifications while ensuring DRC compliance.

Click here for more information

featured chalk talk

Ultra-low Power Fuel Gauging for Rechargeable Embedded Devices
Fuel gauging is a critical component of today’s rechargeable embedded devices. In this episode of Chalk Talk, Amelia Dalton and Robin Saltnes of Nordic Semiconductor explore the variety of benefits that Nordic Semiconductor’s nPM1300 PMIC brings to rechargeable embedded devices, the details of the fuel gauge system at the heart of this solution, and the five easy steps that you can take to implement this solution into your next embedded design.
May 8, 2024
39,170 views