editor's blog
Subscribe Now

What Goes Around

Sitting through iSQED presentations on single-event-upset-tolerant circuits, I couldn’t help but notice the recurrent C2MOS moniker being tossed about. It was unclear to me whether it was stimulating some old, moldy memory or if that was just my imagination.

Some subsequent poking around to learn more proved harder than I expected. The term is tossed out here and there, but it was actually really difficult to confirm what it stands for: Clocked CMOS.

And then I saw a reference to it from 1973: this clearly isn’t new technology. So it is entirely possible that we skimmed through it in my college logic class as one of many digital curiosities.

But it’s apparently being taken seriously today: activity is up since the mid-2000s. The benefit appears to be that latches and flip-flops are much less sensitive to clock overlap issues and race conditions (although they don’t eliminate the normal setup requirements between data and clock.)

A C2MOS latch is really simple. Picture an inverter, which is a two-transistor stack, a P over an N. Now insert another complementary pair of transistors into this stack, so now you have two Ps over two Ns. You drive the added N by CLK and the added P by /CLK. The clock inverter pair isolates the effects of changes to the data from the output. So you set up new data, and only when you toggle the clock are the new values presented to the output. (Some versions show a small keeper on the output since, after the clock reverts back, this is a high-impedance node.)

With this setup, once the new latch data is in place, it doesn’t matter how well timed the CLK and /CLK lines are: the data P and N transistors guarantee the stack to be in a high-impedance state, so you won’t get any crowbar current. (You can get into trouble if the CLK rise and fall times are two slow, but that’s easy to fix. Easy for me to say…)

It is presumably this robustness that is bringing the design style back into favor in circuits that have to be tolerant of an inhospitable welcome.

Leave a Reply

featured blogs
Dec 19, 2024
Explore Concurrent Multiprotocol and examine the distinctions between CMP single channel, CMP with concurrent listening, and CMP with BLE Dynamic Multiprotocol....
Dec 20, 2024
Do you think the proton is formed from three quarks? Think again. It may be made from five, two of which are heavier than the proton itself!...

Libby's Lab

Libby's Lab - Scopes Out Silicon Labs EFRxG22 Development Tools

Sponsored by Mouser Electronics and Silicon Labs

Join Libby in this episode of “Libby’s Lab” as she explores the Silicon Labs EFR32xG22 Development Tools, available at Mouser.com! These versatile tools are perfect for engineers developing wireless applications with Bluetooth®, Zigbee®, or proprietary protocols. Designed for energy efficiency and ease of use, the starter kit simplifies development for IoT, smart home, and industrial devices. From low-power IoT projects to fitness trackers and medical devices, these tools offer multi-protocol support, reliable performance, and hassle-free setup. Watch as Libby and Demo dive into how these tools can bring wireless projects to life. Keep your circuits charged and your ideas sparking!

Click here for more information about Silicon Labs xG22 Development Tools

featured chalk talk

High Power Charging Inlets
All major truck and bus OEMs will be launching electric vehicle platforms within the next few years and in order to keep pace with on-highway and off-highway EV innovation, our charging inlets must also provide the voltage, current and charging requirements needed for these vehicles. In this episode of Chalk Talk, Amelia Dalton and Drew Reetz from TE Connectivity investigate charging inlet design considerations for the next generation of industrial and commercial transportation, the differences between AC only charging and fast charge and high power charging inlets, and the benefits that TE Connectivity’s ICT high power charging inlets bring to these kinds of designs.
Aug 30, 2024
36,124 views