editor's blog
Subscribe Now

FLASH Gets Even Smaller

It feels, at first blush, like the conventional wisdom about floating gate cells not having a future at tiny dimensions may have to go the way lots of conventional wisdom goes. On the heels of Kilopass’s 40-nm MTP announcement, Micron and Intel announced NAND FLASH at as low as 20 nm.

So much for not scalable below 90 nm.

The issue here is too much tunneling when the oxides get too thin. It wasn’t supposed to work with oxides this thin. So… was that wrong?

Well, yes and no. According to Micron, “as oxides have gotten thinner, we have had to come up with more complex oxide and dielectric materials.” And they’re not saying more than that. Presumably that means that it’s not trivial and therefore it’s secret. Or maybe it is trivial; even more reason to keep it secret.

Of course, if electrons were tunneling without permission, the result would be decreased data retention. Such leakage gets worse with repeated programming assaults, so the net net of that is that data retention on these memories stays as it always has, but the endurance goes down.

But Micron says they’re playing with one more variable: density. They’re talking about “data retention per byte” as a metric, which is increasing because density is going up faster than endurance is coming down. It sounds from this like they can use the extra density as redundancy to swap out as cells wear out.

So does this mean that those saying you can’t go below 90 nm are being less than honest? Does that mean the conventional wisdom is wrong? Actually, no; there’s one more distinction: as suggested above, it takes special processing to do this. So you can’t simply make this kind of memory cell using a standard logic process. That’s where things break down. So Kilopass is selling IP for integration on chips with other logic (so-called Logic NVM); Micron and Intel aren’t.

More info in their press release

Leave a Reply

featured blogs
Nov 15, 2024
Explore the benefits of Delta DFU (device firmware update), its impact on firmware update efficiency, and results from real ota updates in IoT devices....
Nov 13, 2024
Implementing the classic 'hand coming out of bowl' when you can see there's no one under the table is very tempting'¦...

featured video

Introducing FPGAi – Innovations Unlocked by AI-enabled FPGAs

Sponsored by Intel

Altera Innovators Day presentation by Ilya Ganusov showing the advantages of FPGAs for implementing AI-based Systems. See additional videos on AI and other Altera Innovators Day in Altera’s YouTube channel playlists.

Learn more about FPGAs for Artificial Intelligence here

featured paper

Quantized Neural Networks for FPGA Inference

Sponsored by Intel

Implementing a low precision network in FPGA hardware for efficient inferencing provides numerous advantages when it comes to meeting demanding specifications. The increased flexibility allows optimization of throughput, overall power consumption, resource usage, device size, TOPs/watt, and deterministic latency. These are important benefits where scaling and efficiency are inherent requirements of the application.

Click to read more

featured chalk talk

Shift Left Block/Chip Design with Calibre
In this episode of Chalk Talk, Amelia Dalton and David Abercrombie from Siemens EDA explore the multitude of benefits that shifting left with Calibre can bring to chip and block design. They investigate how Calibre can impact DRC verification, early design error debug, and optimize the configuration and management of multiple jobs for run time improvement.
Jun 18, 2024
38,593 views