editor's blog
Subscribe Now

Universal Verification Stimulus Format

We used to be ok with the verification silos we grew up with. You’ve got your simulation guys over here helping with circuit and block verification. You’ve got your emulation group over there checking out larger system chunks or running software. In yet another corner, you’ve got your virtual platforms running software.

But really, there can be a lot of rework involved as an SoC migrates from being individual bits and pieces, individually tested, to a unified system, holistically tested. So a group at Accellera has formed to standardize a stimulus format so that verification intent and stimulus can be ported to different environments.

The scope here appears to be twofold. On the one hand, you’ve got different verification methodologies: simulation, emulation, etc. The different platforms may expect different inputs – even if just variations. On the other hand, this also appears to be about scale – blocks and components vs. complete systems.

One of the big differentiators at the system level is the use of software to test out the hardware platform. Note that this is different from using a virtual platform to test software: in that case, it’s the software that’s being tested with a “known good” platform model. The focus of this stimulus effort is more about verifying the platform itself; when software is used for that, then it’s the software that’s “known good.” So, of the silos I mentioned above, that last one seems unlikely to be affected. Then again, it’s different from the others, since it’s not about hardware verification.

Because the low-level stimulus details for, say, simulation will be different from that for software, this is more about capturing intent and verification scenarios for automated generation of the actual stimulus that makes its way into the test environment.

Drawing.png 

The first meeting just happened a week ago; if it’s an activity you’d like to be involved in, now’s a good time to jump in. Apparently a roadmap hasn’t yet been sketched out, so it’s still early days.

You can find more in their announcement.

Leave a Reply

featured blogs
Apr 25, 2024
Structures in Allegro X layout editors let you create reusable building blocks for your PCBs, saving you time and ensuring consistency. What are Structures? Structures are pre-defined groups of design objects, such as vias, connecting lines (clines), and shapes. You can combi...
Apr 25, 2024
See how the UCIe protocol creates multi-die chips by connecting chiplets from different vendors and nodes, and learn about the role of IP and specifications.The post Want to Mix and Match Dies in a Single Package? UCIe Can Get You There appeared first on Chip Design....
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

How Capacitive Absolute Encoders Enable Precise Motion Control
Encoders are a great way to provide motion feedback and capture vital rotary motion information. In this episode of Chalk Talk, Amelia Dalton and Jeff Smoot from CUI Devices investigate the benefits and drawbacks of different encoder solutions. They also explore the unique system advantages of absolute encoders and how you can get started using a CUI Devices absolute encoder in your next design.
Apr 1, 2024
3,423 views