editor's blog
Subscribe Now

Synopsys’s IP Initiative

IP used to refer to hardware designs that could be purchased off the shelf. Actually, at first they were designs that wouldn’t really work for any real application without a consulting contract to adapt them. But, over time, “shrink wrapped” became more viable. The idea was to save design time.

That idea still holds, but we’ve replaced one problem – design of individual blocks – with another: assembling all of the IP blocks into a complete system. And these IP blocks are more than your grampa’s simple fast Fourier transform; these are typically complete protocols that need to run a software stack.

Once assembled, the system will run the system software that’s being written for the SoC in parallel with the hardware design –software that’s separate from, and likely makes use of, the shrink-wrapped protocol libraries that may accompany the hardware IP.

So the full project development process involves hardware designers getting hardware running – first in prototypes, then in silicon. Meanwhile, software guys are coding away, using both virtual prototypes of the hardware and, eventually, the hardware prototypes that the hardware buys built.

In order to accommodate this more complex flow, Synopsys has announced their IP Initiative. It involves a more holistic view of how IP is integrated into SoCs, and the idea is to make the IP and accompanying elements work out of the box so no time is wasted on things that have already been completed – all of the effort can go into integration.

The image below shows the bigger picture of what they’re trying to accomplish. It includes both existing elements (like the hardware IP) and new elements being released as of the announcement, like the prototyping kits.

Figure.png

The IP prototyping kits are intended for hardware engineers, and they include a working reference design out-of-the-box on a HAPS board. IP licencees will have access to the accompanying IP RTL. Meanwhile, the IP software development kits include tools and virtual platform models of the IP that, again, work out-of-the-box.

The final bit, customized IP subsystems, gets to the challenges of putting all of these pieces together and coaxing them to work. Individual IP blocks work out of the box, but assembling them into an SoC isn’t trivial. Synopsys offers services to help create subsystems out of blocks.

You can read more about their offering in their announcement.

Leave a Reply

featured blogs
Apr 23, 2024
The automotive industry's transformation from a primarily mechanical domain to a highly technological one is remarkable. Once considered mere vehicles, cars are now advanced computers on wheels, embodying the shift from roaring engines to the quiet hum of processors due ...
Apr 22, 2024
Learn what gate-all-around (GAA) transistors are, explore the switch from fin field-effect transistors (FinFETs), and see the impact on SoC design & EDA tools.The post What You Need to Know About Gate-All-Around Designs appeared first on Chip Design....
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured chalk talk

Advanced Gate Drive for Motor Control
Sponsored by Infineon
Passing EMC testing, reducing power dissipation, and mitigating supply chain issues are crucial design concerns to keep in mind when it comes to motor control applications. In this episode of Chalk Talk, Amelia Dalton and Rick Browarski from Infineon explore the role that MOSFETs play in motor control design, the value that adaptive MOSFET control can have for motor control designs, and how Infineon can help you jump start your next motor control design.
Feb 6, 2024
10,841 views