editor's blog
Subscribe Now

SiTime Adds Temperature Compensation

SiTime came out with a 32-kHz temperature-compensated MEMS oscillator a few weeks back, targeting the wearables market. 32 kHz is popular because dividing by an easy 215 gives a 1-second period. Looking through the story, there were a couple elements that bore clarification or investigation.

Let’s back up a year or so to when they announced their TempFlat technology. The basic concept is of a MEMS oscillator that, somehow, is naturally compensated against temperature variation without any circuitry required to do explicit compensation.

At the time, they said they could get to 100 ppb (that’s “billion”) uncompensated, and 5 ppb with compensation. (The “ppb” spec represents the complete deviation across the temperature range; a lower number means a flatter response.) This year, they announced their compensated version: They’re effectively taking a 50 ppm (million, not billion) uncompensated part and adding compensation to bring it down to 5 ppm. I was confused.

On its face, the compensation is a straightforward deal: take the temperature response of the bare oscillator and reverse it.

Figure.jpg

Image courtesy SiTime

But what about the “millions” vs. “billions” thing? Why are we compensating within the “millions” regime if they could get to ppb uncompensated?

Turns out, in the original TempFlat release, they were talking about where they think the TempFlat technology can eventually take them – not where their products are now. For now, they need to compensate to get to 5 ppm. In the future, they see doing 100 ppb without compensation, 5 ppb with compensation. That’s a 1000x improvement over today’s specs. Critically, from what they’ve seen published by their competition, they say that they don’t see their competitors being able to do this.

So, in short: ppmillions today, ppbillions later. These are the same guys, by the way, that have also implemented a lifetime warranty on their parts.

There was one other thing I was hoping I’d be able to write more about: how this whole TempFlat thing works. We looked at Sand 9’s and Silicon Labs’ approaches some time back; they both use layered materials with opposing temperature responses to flatten things out. So how does SiTime do it?

Alas, that will remain a mystery for the moment. They’re declining to detail the technology as a competitive defense thing. The less the competition knows…

You can read more about SiTime’s new TCXO in their announcement.

Leave a Reply

featured blogs
Apr 25, 2024
Cadence's seven -year partnership with'¯ Team4Tech '¯has given our employees unique opportunities to harness the power of technology and engage in a three -month philanthropic project to improve the livelihood of communities in need. In Fall 2023, this partnership allowed C...
Apr 24, 2024
Learn about maskless electron beam lithography and see how Multibeam's industry-first e-beam semiconductor lithography system leverages Synopsys software.The post Synopsys and Multibeam Accelerate Innovation with First Production-Ready E-Beam Lithography System appeared fir...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

One Year of Synopsys Cloud: Adoption, Enhancements and Evolution
Sponsored by Synopsys
The adoption of the cloud in the design automation industry has encouraged innovation across the entire semiconductor lifecycle. In this episode of Chalk Talk, Amelia Dalton chats with Vikram Bhatia from Synopsys about how Synopsys is redefining EDA in the Cloud with the industry’s first complete browser-based EDA-as-a-Service cloud platform. They explore the benefits that this on-demand pay-per use, web-based portal can bring to your next design. 
Jul 11, 2023
32,779 views