editor's blog
Subscribe Now

Driving ADAS

ARM reckons that the computational power in your car is set to increase by 100X in the next ten years, mainly through the growth of ADAS (Advanced Driver Assistance Systems). These systems use sensors of many kinds to gather information about the environment, process it, and present it to the driver. While at one level all that ADAS is doing is what a reasonably alert driver does- notices speed limit signs, the position of other vehicles etc, at the next level it gets more exciting. In poor light conditions ADAS can use visual light and RADAR sensors to see better, will use image processing to decide if the dimly seen figure is a pedestrian, a cyclist or a street light and then calculate likely paths, if it is not a street light.

Just that one example will use a ton of processing power and, as the information is safety-critical, the systems to do this will have to be developed accordingly. This, in the automotive environment, means that they will need to conform to ISO 26262, which requires a mass of documentation about the components in use and the software running in the systems. Earlier this year ARM announced a package of safety documentation and support for the Cortex-R5, a core that a number of chip companies are using in processors for automotive applications.

They have now extended the programme to the Cortex-A family, with packages available for the Cortex-A53, the Cortex-A57 and the big beast of the ARM family launched earlier this year, the Cortex-A72.

SoC implementers will get help with the development and safety assessment of SoC designs to help meet the functional safety standards such as ISO 26262 and IEC 61508 through a documentation package. The package includes a safety manual, a FMEA (Failure Modes and Effects Analysis) report and a development interface report. This should shorten significantly the time and effort needed for a certification programme within an SoC company.

ARM intends to provide the same package for other processors once they have waded through the huge amount of work that providing the package involves.

Leave a Reply

featured blogs
Apr 25, 2024
Structures in Allegro X layout editors let you create reusable building blocks for your PCBs, saving you time and ensuring consistency. What are Structures? Structures are pre-defined groups of design objects, such as vias, connecting lines (clines), and shapes. You can combi...
Apr 25, 2024
See how the UCIe protocol creates multi-die chips by connecting chiplets from different vendors and nodes, and learn about the role of IP and specifications.The post Want to Mix and Match Dies in a Single Package? UCIe Can Get You There appeared first on Chip Design....
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Accessing AWS IoT Services Securely over LTE-M
Developing a connected IoT design from scratch can be a complicated endeavor. In this episode of Chalk Talk, Amelia Dalton, Harald Kröll from u-blox, Lucio Di Jasio from AWS, and Rob Reynolds from SparkFun Electronics examine the details of the AWS IoT ExpressLink SARA-R5 starter kit. They explore the common IoT development design challenges that AWS IoT ExpressLink SARA-R5 starter kit is looking to solve and how you can get started using this kit in your next connected IoT design.
Oct 26, 2023
23,703 views