editor's blog
Subscribe Now

CogniVue Drives at Mobileye

iStock_000068339495_Small.jpgCogniVue recently made a roadmap announcement that puts Mobileye on notice: CogniVue is targeting Mobileye’s home turf.

We looked at Mobileye a couple years ago; their space is Advanced Driver Assistance Systems (ADAS). From an image/video processing standpoint, they apparently own 80% of this market. According to CogniVue, they’ve done that by getting in early with a proprietary architecture and refining and optimizing over time to improve their ability to classify and identify objects in view. And they’ve been able to charge a premium as a result.

What’s changing is the ability of convolutional neural networks (CNNs) to move this capability out of the realm of custom algorithms and code, opening it up to a host of newcomers. And, frankly, making it harder for players to differentiate themselves.

According to CogniVue, today’s CNNs are built on GPUs and are huge. And those GPUs don’t have the kind of low-power profile that would be needed for mainstream automotive adoption. CogniVue’s announcement debuts their new Opus APEX core, which they say can support CNNs in a manner that can translate to practical commercial use in ADAS designs. The Opus power/performance ratio has improved by 5-10 times as compared to their previous G2 APEX core.

You can find more commentary in their announcement.

 

Updates: Regarding the capacity for Opus to implement CNNs, the original version stated, based on CogniVue statements, that more work was needed to establish Opus supports CNNs well. CogniVue has since said that they’ve demonstrated this through “proprietary benchmarks at lead Tier 1s,” so I removed the qualifier. Also, it turns out that the APEX core in a Freescale device (referenced in the original version) isn’t Opus, but rather the earlier G2 version – the mention in the press release (which didn’t specify G2 or Opus) was intended not as testament to Opus specifically, but to convey confidence in Opus based on experience with G2. The Freescale reference has therefore been removed, since it doesn’t apply to the core being discussed.

Leave a Reply

featured blogs
Apr 19, 2024
Data type conversion is a crucial aspect of programming that helps you handle data across different data types seamlessly. The SKILL language supports several data types, including integer and floating-point numbers, character strings, arrays, and a highly flexible linked lis...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...
Apr 18, 2024
See how Cisco accelerates library characterization and chip design with our cloud EDA tools, scaling access to SoC validation solutions and compute services.The post Cisco Accelerates Project Schedule by 66% Using Synopsys Cloud appeared first on Chip Design....

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTekā€™s design process usually relies on human intuition, but with Cadenceā€™s Optimality Intelligent System Explorer and Clarity 3D Solver, theyā€™ve increased design productivity by 75X. The Optimality Explorerā€™s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured chalk talk

Electromagnetic Compatibility (EMC) Gasket Design Considerations
Electromagnetic interference can cause a variety of costly issues and can be avoided with a robust EMI shielding solution. In this episode of Chalk Talk, Amelia Dalton chats with Sam Robinson from TE Connectivity about the role that EMC gaskets play in EMI shielding, how compression can affectĀ EMI shielding, and how TE Connectivity can help you solve your EMI shielding needs in your next design.
Aug 30, 2023
28,141 views