editor's blog
Subscribe Now

Blue-Collar Sensors from Microchip

In our coverage of sensors, we’ve seen increasing levels of abstraction as microcontrollers in or near the sensors handle the hard labor of extracting high-level information from low-level info. These are the hipster sensors that go on the wearables that go on your person for a month and then go on your nightstand.

Today, however, we’re going to get grittier and more obscure. Some sensors have more of a blue-collar feel to them, and I discussed two examples with Microchip back at Sensors Expo.

The first is a current sensor. Specifically, a “high-side” current sensor, meaning it goes in series with the upper power supply rail (not the ground rail). It can report current, voltage, or power. The unusual thing about this unit (the PAC1921) is that it provides both analog and digital outputs. “Why?” you may ask…

So much has moved to digital because, well, data can be provided in an orderly fashion, queried as needed by inquiring processors. FIFOs and advanced processing are available in the digital realm, and if you’re maintaining a history of power supply performance, digital is a great way to keep that tally.

Digital does, however, introduce latency. If you’re sensing the current and using the result in your power management algorithm, a bit of latency means that… oh, say, the voltage gets too high and you measure that and then digitize it and then put it someplace for a processor to find and then – oh, now look at that mess! Analog works much more quickly in a control loop. So here you get both.

Current_sensor_figure.jpg 

(Image courtesy Microchip)

Then, off to a completely different unit: a temperature sensor. Well, actually, not the sensor itself, but the wherewithal to calculate temperature from a thermocouple.

Apparently our penchant for integration and abstraction has lagged in this corner of the world. While thermocouples can generate a voltage based on the temperature, calculating the precise temperature based on that voltage has been a discrete affair (not to be confused with a discreet affair). It requires lots of analog circuitry to measure the microvolt signal (typically done at a “cold” junction, away from the actual heat), digitize it, and then perform the math.

That math reflects the fact that thermocouples have a non-linear relationship between their output voltage and the temperature. And the details vary by thermocouple type. So this calculation is typically done in an external microcontroller.

This would make the new MCP9600 the first device fully integrated with all the bits needed to convert volts (from the thermocouple) into degrees Celsius. They refer to it as a thermocouple-conditioning IC, and it works for a wide range of thermocouple types (K, J, T, N, S, E, B and R for those of you keeping score).

 Thermocouple_figure.jpg

(Image courtesy Microchip)

You can find more in their respective announcements: current sensor here, thermocouple here. We now return you to your white-collar sensors, which appear to have moved on from latte to white wine…

Leave a Reply

featured blogs
Mar 28, 2024
The difference between Olympic glory and missing out on the podium is often measured in mere fractions of a second, highlighting the pivotal role of timing in sports. But what's the chronometric secret to those photo finishes and record-breaking feats? In this comprehens...
Mar 26, 2024
Learn how GPU acceleration impacts digital chip design implementation, expanding beyond chip simulation to fulfill compute demands of the RTL-to-GDSII process.The post Can GPUs Accelerate Digital Design Implementation? appeared first on Chip Design....
Mar 21, 2024
The awesome thing about these machines is that you are limited only by your imagination, and I've got a GREAT imagination....

featured video

We are Altera. We are for the innovators.

Sponsored by Intel

Today we embark on an exciting journey as we transition to Altera, an Intel Company. In a world of endless opportunities and challenges, we are here to provide the flexibility needed by our ecosystem of customers and partners to pioneer and accelerate innovation. As we leap into the future, we are committed to providing easy-to-design and deploy leadership programmable solutions to innovators to unlock extraordinary possibilities for everyone on the planet.

To learn more about Altera visit: http://intel.com/altera

featured chalk talk

Silence of the Amps: µModule Regulators
In this episode of Chalk Talk, Amelia Dalton and Younes Salami from Analog Devices explore the benefits of Analog Devices’ silent switcher technology. They also examine the pros and cons of switch mode power supplies and how you can utilize silent switcher µModule regulators in your next design.
Dec 13, 2023
14,643 views