editor's blog
Subscribe Now

An Almost-Cloudy San Diego Day

Not long ago we looked at how EDA is shaping up in the cloud, including work that Synopsys has been doing to make VCS available for bursty relief usage. I was fortunate enough to attend a demo session to show how what has heretofore been an interesting theoretical discussion could be made concrete.

Synopsys spent a lot of effort on cloud computing at DAC this year, including a cloud partners booth. Various names, both obvious and some not so, were in the booth: Amazon, NetAp, Cisco, CloudPassage, Univa, Platform Computing, Xuropa, and EVE. Most of these guys provide a variety of services to bolster the Infrastructure as a service (IaaS), Platform as a service (PaaS), or Software as a service (SaaS) layers of any EDA offering. They appear to have very specific EDA (not just Synopsys) messaging.

In the demo session itself, we saw a bit more of Synopsys’s VCS specifics. As mentioned before, their setup involves a master node and multiple work nodes. Each cloud-computing instance (CCI) node consists of an 8-core Nehalem machine with 23 GB of memory for the 8 cores, along with a single VCS license. You can then requisition clusters consisting of multiples of 8 nodes, sizing up to hundreds of nodes (although they want advance notice on really large requests for now so they can set that up with Amazon; they don’t currently have them lying around because that costs money and there’s not that much demand yet).

They showed the scripts used to get things set up. The bring-up process lasts about a half an hour (they didn’t try to run that live), which might sound like a long time until you realize that, in that time, you’ve gone from nothing to, potentially, a multi-hundred-server compute farm.

I’d like to report on how they then went into the cloud and ran an example OpenSPARC simulation. That was the plan. But the unthinkable happened. And I totally felt for the guy running the demo. I mean, it’s the nightmare scenario for any of you (and me) who have done demos: you go to where the files are all ready to be uploaded and run… and… they’re gone. Completely gone. Like, the folder isn’t even there.

Turns out that a hard drive died on the Synopsys campus. The drive housing the project they were going to demonstrate. File it under “W” for “WT…” well, you know how that one ends. Yeah, crazy. So there wasn’t time to reconstruct it on another drive and start again. So we’ll have to report later when we see things actually happening in the cloud.

Leave a Reply

featured blogs
Apr 25, 2024
Structures in Allegro X layout editors let you create reusable building blocks for your PCBs, saving you time and ensuring consistency. What are Structures? Structures are pre-defined groups of design objects, such as vias, connecting lines (clines), and shapes. You can combi...
Apr 25, 2024
See how the UCIe protocol creates multi-die chips by connecting chiplets from different vendors and nodes, and learn about the role of IP and specifications.The post Want to Mix and Match Dies in a Single Package? UCIe Can Get You There appeared first on Chip Design....
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Portable Medical Devices and Connected Health
Decentralized healthcare is moving from hospitals and doctors’ offices to the patients’ home and office and in the form of personal, wearable, and connected devices. In this episode of Chalk Talk, Amelia Dalton and Roger Bohannan from Littelfuse examine the components, functions and standards for a variety of portable connected medical devices. They investigate how Littelfuse can help you navigate the development of your next portable connected medical design.
Jun 26, 2023
34,357 views