editor's blog
Subscribe Now

20-nm Test Enhancements

ITC is usually the time when the EDA companies announce their coolest test-related advances. While Mentor announced their IJTAG support, Synopsys focused its agenda largely on the issues surrounding the 20-nm node. Each node has its particular failure modes, and tests need to be added or refocused to catch those failures.

Two of the advances they announced involved memory and multicore; we’ll take them in order.

They first announced a change to their STAR memory system, both adding and removing hierarchy. The architecture of their memory test has been made hierarchical, with an SMS Server at the top that is connected to one or more chains of SMS Processors. Each processor handles several individual memory blocks. Cache and other high-speed memory associated with higher-end cores can also be mapped to a test bus that is managed by an SMS Processor.

Where hierarchy was taken away was in the wrapping of the memory blocks. Regardless of the type of memory, there’s a wrapper to interface it to the SMS Processor. But a true wrapper adds a level of hierarchy, and this can wreak havoc with constraints and such. So what they’ve done is keep the wrapper at the same hierarchical level as the memory. Which makes it more of a shim than a wrapper.

On the multicore side of things, they have shared pins to allow concurrent testing of multiple cores. Each core has its own internal test compression, and if all of the cores are identical, then ATPG can create a set of patterns that all cores can test concurrently. If the cores aren’t identical (but similar), then the ATPG handles one of the cores, and then goes to the other cores to see what was fortuitously covered by the vectors already created; it can then create supplementary vectors to patch any other coverage holes. Those extra vectors will have no impact on the cores already fully covered.

Of course, this raises the question, if you’re testing these all in parallel and one fails, how will you know which one? They have more than one output, and by looking at the outputs along with the patterns, they can positively ID where the issue was.

This sharing of the test pins (note that it’s not muxing the pins, it’s literally sharing) reduces both the test time and the number of pins required.

These are some of the highlights of what they announced; you can find more in their release.

Leave a Reply

featured blogs
Apr 19, 2024
In today's rapidly evolving digital landscape, staying at the cutting edge is crucial to success. For MaxLinear, bridging the gap between firmware and hardware development has been pivotal. All of the company's products solve critical communication and high-frequency analysis...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...
Apr 18, 2024
See how Cisco accelerates library characterization and chip design with our cloud EDA tools, scaling access to SoC validation solutions and compute services.The post Cisco Accelerates Project Schedule by 66% Using Synopsys Cloud appeared first on Chip Design....

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured chalk talk

Industrial Drives and Pumps -- onsemi and Mouser Electronics
Sponsored by Mouser Electronics and onsemi
In this episode of Chalk Talk, Amelia Dalton and Bob Card and Hunter Freberg from onsemi discuss the benefits that variable frequency drive, semiconductor optimization, and power switch innovation can bring to industrial motor drive applications. They also examine how our choice of isolation solutions and power packages can make a big difference for these kinds of applications and how onsemi’s robust portfolio of intelligent power modules, current sensing solutions and gate drivers are a game changer when it comes to industrial motor drive applications.
Mar 25, 2024
3,703 views