industry news
Subscribe Now

ANSYS Debuts RedHawk Version 2014 for Power Noise and Realibility Sigh-off Platform for Finfet-Based Designs

PITTSBURGH – May 6, 2014 – ANSYS, Inc. (NASDAQ: ANSS) today introduced 2014 version of RedHawk, the industry-standard power noise and reliability sign-off platform ready for FinFET-based designs. The new release delivers greater performance, capacity and coverage, as well as sign-off accuracy to address the challenges faced by the increasing complexity of FinFET-based designs.

To meet the demands of lower power consumption and higher operating performance in today’s mobile, computing, consumer and automotive electronics, integrated circuit (IC) designers are adopting FinFET technology – a three-dimensional transistor architecture in which the elevated channel is wrapped by a gate electrode. While FinFET brings many benefits, these designs experience smaller noise and reliability margins, which require tighter control over analysis accuracy.

Capacity and Performance

To meet sign-off quality, system-on-chip (SoC) dynamic voltage drop analysis requires a flat modeling framework to accurately predict the current flow inside tightly coupled elements across chip, package and the printed circuit board (PCB). Due to the global nature of power delivery network, a more traditional hierarchical approach cannot deliver the accuracy needed for sign-off. RedHawk version 2014 offers Distributed Machine Processing (DMP) capabilities that deliver on average three times improvement in memory footprint, enabling the simulation of more than 100 million instances or over 2 billion nodes, while maintaining flat simulation accuracy. DMP’s proprietary architecture takes advantage of the increased processing power and memory capacity available in a private machine cluster to simulate each module within the context of the entire chip, including package and PCB elements.

Along with DMP, this release employs software architecture changes and flow optimizations to deliver two to three times runtime improvements over its previous release, which was already the fastest power integrity solution in the market. The combination of DMP and architecture improvements bring capacity and performance required for today’s ultra large designs, especially those fabricated using FinFET technologies, without compromising sign-off accuracy.

Chip-Package Co-Analysis

With the increasing size of SoC, along with variations in the switching current and parasitic profile across the chip, the connection between SoC and package needs to be as granular as possible to deliver quality sign-off. RedHawk version 2014 introduces RedHawk-CPA, the industry’s first integrated chip-package co-simulation and co-analysis solution. This new option maps the package to the die layout, through pin-to-pin physical connectivity – seamlessly merging a fully distributed package parasitic network with an on-die power delivery network. By incorporating both chip and package layouts in the same simulation environment, RedHawk-CPA provides immediate feedback on the quality of the package design, as well as the impact of package parasitic on the chip’s performance.

Foundry-Certified Reliability

FinFET-based designs introduce tighter electromigration (EM) limits and a new class of EM rules, as well as greater thermal impact on EM reliability. RedHawk version 2014 is foundry certified for IR-drop and EM analysis for the latest process technology. It supports advanced EM rules that consider current flow direction, metal topology and via types for both power and signal nets. In addition, this release enables thermal-aware EM analysis by providing chip thermal model (CTM) that accurately captures the thermal distribution that is critical for FinFET devices with greater self-heating issues.

“Over the past decade, RedHawk has been the industry standard for power integrity and sign-off by the world’s top 20 semiconductor companies,” said Aveek Sarkar, vice president of product engineering and support from ANSYS. “As the industry adopts new FinFET technology, our customers face increasing challenges in meeting their power, performance and price targets. The release of RedHawk version 2014 demonstrates our commitment in continuing to deliver innovative technologies to meet our customers’ next-generation low-power, high-performance design requirements.”

The ANSYS portfolio of product offerings will be showcased at the Design Automation Conference (DAC) June 2-6 in exhibit booth #1413.

About ANSYS, Inc. 

ANSYS brings clarity and insight to customers’ most complex design challenges through fast, accurate and reliable engineering simulation. Our technology enables organizations ? no matter their industry ? to predict with confidence that their products will thrive in the real world. Customers trust our software to help ensure product integrity and drive business success through innovation. Founded in 1970, ANSYS employs more than 2,600 professionals, many of them expert in engineering fields such as finite element analysis, computational fluid dynamics, electronics and electromagnetics, and design optimization. Headquartered south of Pittsburgh, U.S.A., ANSYS has more than 75 strategic sales locations throughout the world with a network of channel partners in 40+ countries. Visit www.ansys.com for more information.

 

ANSYS also has a strong presence on the major social channels. To join the simulation conversation, please visit: www.ansys.com/Social@ANSYS 

Leave a Reply

featured blogs
Mar 18, 2024
Innovation in the AI and supercomputing domains is proceeding at a rapid pace, with each new advancement heralding a future more tightly interwoven with the threads of intelligence and computation. Cadence, with the release of its Millennium Platform, co-optimized with NVIDIA...
Mar 18, 2024
Cloud-based EDA tools are critical to accelerating AI chip design and verification; see how NeuReality leveraged cloud-based chip emulation for their 7NR1 NAPU.The post NeuReality Accelerates 7nm AI Chip Tape-Out with Cloud-Based Emulation appeared first on Chip Design....
Mar 5, 2024
Those clever chaps and chapesses at SiTime recently posted a blog: "Decoding Time: Why Leap Years Are Essential for Precision"...

featured video

We are Altera. We are for the innovators.

Sponsored by Intel

Today we embark on an exciting journey as we transition to Altera, an Intel Company. In a world of endless opportunities and challenges, we are here to provide the flexibility needed by our ecosystem of customers and partners to pioneer and accelerate innovation. As we leap into the future, we are committed to providing easy-to-design and deploy leadership programmable solutions to innovators to unlock extraordinary possibilities for everyone on the planet.

To learn more about Altera visit: http://intel.com/altera

featured paper

Reduce 3D IC design complexity with early package assembly verification

Sponsored by Siemens Digital Industries Software

Uncover the unique challenges, along with the latest Calibre verification solutions, for 3D IC design in this new technical paper. As 2.5D and 3D ICs redefine the possibilities of semiconductor design, discover how Siemens is leading the way in verifying complex multi-dimensional systems, while shifting verification left to do so earlier in the design process.

Click here to read more

featured chalk talk

Non-Magnetic Interconnects
Sponsored by Mouser Electronics and Samtec
Magnets and magnetic fields can cause big problems in medical, scientific, industrial, space, and quantum computing applications but using a non-magnetic connector can help solve these issues. In this episode of Chalk Talk, Amelia Dalton and John Riley from Samtec discuss the construction of non-magnetic connectors and how you could use non-magnetic connectors in your next design.
May 3, 2023
36,518 views