industry news
Subscribe Now

Synopsys Launches Industry’s First Integrated Hybrid Prototyping Solution

MOUNTAIN VIEW, Calif., June 4, 2012 – 

Highlights: 

  • Get the best of both worlds with a hybrid prototype that seamlessly links virtual and FPGA-based prototypes 
  • Start multi-core SoCprototyping earlier and achieve high-performance execution of system-level models with directly connected real-world hardware interfaces 
  • Partition SoC design blocks between virtual and FPGA-based prototype environments  to maximizeoverall prototype performance 
  • Accelerate system bring-upby using virtual prototyping for new design blocks and FPGA-based prototyping for existing logic 
  • Improve debug visibility and control of software under development through the Virtualizer-based environment 
  • Easily integratehigh-performance ARM® Cortex™ processor models, transactors for  ARM AMBA® interconnect and Synopsys® DesignWare® IPwith the rest of your design into a single hybrid prototype 

Synopsys, Inc. (Nasdaq: SNPS), a world leader in software and IP used in the design, verification and manufacture of electronic components and systems, today announcedan integrated hybrid prototyping solutionthat combines Synopsys’ Virtualizer virtual prototyping and Synopsys’ HAPS FPGA-based prototypingto accelerate the development of system-on-chip (SoC)hardwareand software.By using Virtualizervirtual prototyping for new design functions andHAPS FPGA-based prototyping for reused logic, designers can start software development up to 12 months earlier in the design cycle. In addition, Synopsys’ hybrid prototyping solution enablesdesigners to accelerate hardware/software integration and system validation, significantly reducing the overall product design cycle.With highperformance models for ARM Cortex processors, ARM AMBAprotocol-based transactors, and DesignWare IP, developers can easily partition their ARM processor-based designs into virtual and FPGA-based prototypes as best suited to their design requirements.

Today, designers use two relatively independent methods for SoC prototyping: transactionlevel model (TLM)-based virtual prototyping and FPGA-based prototyping. Virtual prototyping is ideal for accelerating pre-RTL software development by executing fast TLMs and provides more efficient debug and analysis scenarios. FPGA-based prototyping provides cycle-accurate, high-performance execution and direct real-world interface connectivity. Synopsys’ hybrid prototyping solution blends the strengths of bothVirtualizer virtual and HAPS FPGA-based prototyping to enable software development and system integration much sooner in the project lifecycle.

“The rising complexity and software content associated with multi-coreSoCs means that system engineers and software developers cannot wait for hardware to begin their work; so, they are increasingly utilizing prototypes of their chips and systems,” saidChris Rommel, vice president, embedded software and hardware, of VDC Research.“Synopsys’ ‘hybrid’ approach addresses many of the limitations of standalone SoC prototyping methods by allowing developers to freely mix pre-RTL transaction-level models with RTL that already exists or is being created, giving design teams a significant head start on their hardware and software development.”

Synopsys’ hybrid prototyping solution enhances software stack validation throughvery high speed execution of processors using a Virtualizer virtual prototype. It allows direct connection to real-world I/O model interfacesthrough analog PHYs or test equipment attached to a HAPS FPGA-based prototype. In addition, designers cantake advantage of existing RTL or IP in the FPGA-based prototype and new functions in SystemC transaction-level models,which are faster to implement and available much sooner in a project lifecycle. 

Synopsys’ high-performance HAPS Universal Multi-Resource Bus (UMRBus) physical link efficiently transfers data between the virtual and FPGA-based prototyping environments. The pre-verified HAPS-based transactors, supportingARMAMBA 2.0 AHB™/APB™, AXI3™, AXI-4™and AXI4-Lite™ interconnects,give designers the flexibility to partition the SoC design between the virtual or FPGA-based prototyping environments at the natural block-level boundaries of the AMBA interconnect.By using the software debug capability within the Virtualizer-based environment in a hybrid prototype,users have greater visibility and control into the register and memory files of the software under development compared to traditional FPGA-based prototyping.

“Hybrid prototyping offers design teams the best of what both hardware and software prototyping have to offer,” said John Koeter, vice president of marketing for IP and systems  at Synopsys. “Byintegratingthe strengths of Virtualizer virtual prototyping with HAPS FPGA-based prototyping using the UMRBus physical link, Synopsys enables designers to develop fully operational SoC prototypesmuch faster and earlier in the design cycle, and acceleratesoftware development and full system validation.”

Availability

The hybrid prototyping solutionis available now to early adopters.

Hybrid Prototyping at DAC 2012

Synopsys will be demonstrating the integrated hybrid prototyping solution at DAC 2012, booth #1130. DAC takes place in San Francisco, CA June 3 – 7, 2012. For more information on Synopsys’ participation at DAC 2012 visit www.synopsys.com/dac.

About Synopsys®

Synopsys, Inc. (Nasdaq:SNPS) is a world leader in electronic design automation (EDA),  supplying the global electronics market with the software, intellectual property (IP) and  services used in semiconductor design, verification and manufacturing. Synopsys’ comprehensive, integrated portfolio of implementation, verification, IP, manufacturing and field-programmable gate array (FPGA) solutions helps address the key challenges designers and manufacturers face today, such as power and yield management, system-to-silicon verification and time-to-results. These technology-leading solutions help give Synopsys customers a competitive edge in bringing the best products to market quickly while reducing costs and schedule risk. Synopsys is headquartered in Mountain View, California, and has approximately 70 offices located throughout North America, Europe, Japan, Asia and India.

Visit Synopsys online at http://www.synopsys.com

Leave a Reply

featured blogs
Apr 25, 2024
Cadence's seven -year partnership with'¯ Team4Tech '¯has given our employees unique opportunities to harness the power of technology and engage in a three -month philanthropic project to improve the livelihood of communities in need. In Fall 2023, this partnership allowed C...
Apr 24, 2024
Learn about maskless electron beam lithography and see how Multibeam's industry-first e-beam semiconductor lithography system leverages Synopsys software.The post Synopsys and Multibeam Accelerate Innovation with First Production-Ready E-Beam Lithography System appeared fir...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

SLM Silicon.da Introduction
Sponsored by Synopsys
In this episode of Chalk Talk, Amelia Dalton and Guy Cortez from Synopsys investigate how Synopsys’ Silicon.da platform can increase engineering productivity and silicon efficiency while providing the tool scalability needed for today’s semiconductor designs. They also walk through the steps involved in a SLM workflow and examine how this open and extensible platform can help you avoid pitfalls in each step of your next IC design.
Dec 6, 2023
18,651 views