industry news
Subscribe Now

EU’s INTERESTED project concludes with goals achieved

Elancourt, France and Cheltenham, UK – 6th July 2011.  The European Union’s three-year INTERESTED (INTERoperable Embedded Systems Tool chain for Enhanced rapid Design, prototyping and code generation) project, funded under the 7th Framework Programme, has come to a successful conclusion with its goals achieved in terms of significantly reducing the cost and improving the quality and time-to-market of safety-critical embedded systems. 

The INTERESTED project has created an integrated and open reference tool chain for complex safety and mission-critical embedded systems and software development that is not only highly dependable, safe and efficient but also reduces design and deployment costs by up to 50%.  The INTERESTED reference tool chain successfully assimilates tools from leading European embedded tool vendors into three distinct design domains – system and software design, networking and execution platform, and timing and code analysis – covering the full spectrum of embedded systems and software development.

“We are extremely pleased to have brought the INTERESTED project to a highly successful conclusion. It represents a major opportunity to improve the cost, quality and time-to-market of embedded systems in Europe,” said Eric Bantegnie, CEO of Esterel Technologies and co-ordinator of the INTERESTED consortium. “It has been a massive effort. The past 12 months alone has seen the completion of 17 integrations between the 11 different tools in the INTERESTED reference tool chain, so far resulting in 14 new product prototypes. This extends from requirements capture down to the actual integration of the code on target, including verification and validation.” 

The European embedded tool vendors who participated in the INTERESTED consortium included AbsInt Angewandte Informatik (Germany), Atego (UK), Commissariat à l’Energie Atomique et aux énergies alternatives (France), Esterel Technologies (France), Evidence (Italy), Symtavision (Germany), Sysgo (Germany) and TTTech Computertechnik (Austria).

As an ongoing part of the INTERESTED project, the reference tool chain has also been evaluated and validated by several major European embedded tool users on practical applications against real-world design interoperability and cost-reduction requirements.  These industrial partners, including Airbus Operations S.A.S (France), Thales (France), Commissariat à l’Energie Atomique et aux énergies alternatives (France), and Siemens Mobility Division, Rail Automation (Germany) and Magneti Marelli (Italy) representative of the primary, mission and safety-critical target industries, all reported significant productivity improvements.

Airbus Operations S.A.S has estimated that its use of the INTERESTED tool chain resulted in a 48% reduction in overall project effort due mainly to the benefits derived from implementing model-driven processes and automatic code generation, coupled with the ability to guarantee consistency of data exchanged between systems and software teams reduce integration effort and the time needed for rework.  

Thales reported that the rigour imposed by the use of model-driven tools compared to freeform alternatives resulted in a 25% reduction in overall project effort, a 10% reduction in the time spent on modeling and a 25% reduction in the number of remarks raised by design reviewers.

Siemens Mobility reduced overall projects costs by 20% but remarked that the INTERESTED tool chain would have reduced them by up to 52% had the tools and techniques not all been new to its process. 

Focusing on overall development effort, the Commissariat à l’Energie Atomique et aux énergies alternatives estimated that, with advanced familiarity of the development tools, initial development costs were reduced by approximately 40% and 69% for on-going maintenance costs.

Magneti Marelli stated that, with 70% of rework relating to changes or issues in the architecture design, a 50% time saving, and possibly more, could be made by applying the INTERESTED tool chain. The adoption of a model-based design architecture, together with systematic timing analysis, saved one person-year effort in verifying functionality and responding to change requests.

“The INTERESTED project successfully met its objective of delivering substantial savings in overall project costs as evidenced by the industrial evaluations,” said Hedley Apperly Atego’s Vice-President of Product and Marketing and the marketing spokesperson for the INTERESTED consortium. “The INTERESTED tool chain more than meets the requirements of major European companies across a broad spectrum of industries whose worldwide leadership position increasingly depends on reducing the cost of developing complex embedded systems and software. We are fully productizing the integrations we have developed as part of the project, as will all the other tool vendors involved in the consortium.”

Leave a Reply

featured blogs
Apr 24, 2024
Diversity, equity, and inclusion (DEI) are not just words but values that are exemplified through our culture at Cadence. In the DEI@Cadence blog series, you'll find a community where employees share their perspectives and experiences. By providing a glimpse of their personal...
Apr 23, 2024
We explore Aerospace and Government (A&G) chip design and explain how Silicon Lifecycle Management (SLM) ensures semiconductor reliability for A&G applications.The post SLM Solutions for Mission-Critical Aerospace and Government Chip Designs appeared first on Chip ...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

E-Mobility - Charging Stations & Wallboxes AC or DC Charging?
In this episode of Chalk Talk, Amelia Dalton and Andreas Nadler from Würth Elektronik investigate e-mobility charging stations and wallboxes. We take a closer look at the benefits, components, and functions of AC and DC wallboxes and charging stations. They also examine the role that DC link capacitors play in power conversion and how Würth Elektronik can help you create your next AC and DC wallbox or charging station design.
Jul 12, 2023
32,683 views